homehome Home chatchat Notifications


New protein can increase yields, save farmers millions every year

A tiny protein which can make a big difference!

Alexandra Gerea
April 3, 2017 @ 4:12 pm

share Share

Every single day, plants transform carbon into food — but sometimes, some plants transform carbon into a plant-toxic compound, drastically reducing yields. The newly identified protein transports the toxic product, called glycolate, ensuring that it can be recycled into a useful sugar molecule.

plant respiration carbon dioxide

During photosynthesis in C3 crops, such as wheat and rice, the enzyme Rubisco will react with oxygen (instead of carbon dioxide) creating a plant-toxic compound that must be recycled, wasting energy. University of Illinois researchers — including USDA/ARS scientist Paul South (center), USDA/ARS scientist Don Ort (right), and Amanda Cavanagh (left) — report in Plant Cell the discovery of a key protein in this process, which they hope to manipulate to increase plant productivity.

“Photorespiration is essential for C3 plants, such as rice and soybeans, but operates at the massive expense of fixed carbon and energy,” said project lead Don Ort, USDA/ARS scientist and the Robert Emerson Professor of Plant Biology at Illinois. “We have identified photorespiration as a primary target to improve photosynthetic efficiency as a strategy to improve crop yield. Successfully re-engineering photorespiration requires deep knowledge of the process, for which understanding of transport steps is most lacking.”

Photosynthesis is the process through which plants (and other organisms such as algae) convert light energy into chemical energy for later release. There are several ways through which carbon dioxide is absorbed in the process. C3 carbon fixation is one of three metabolic pathways for carbon fixation in photosynthesis, converting carbon into an organic substance called ribulose bisphosphate.

Many plants accidentally make a plant-toxic compound during photosynthesis that is recycled through this process, called photorespiration. Image credits: Many plants accidentally make a plant-toxic compound during photosynthesis that is recycled through this process, called photorespiration. Image credits: Realizing Increased Photosynthetic Efficiency.

Basically, researchers want to bypass the plant’s regular way of dealing with glycolate and in the process, save the plants a lot of energy and prevent them from releasing ammonia, which is harmful to them.

“Now we’re going to try to make a shortcut to avoid all the wasteful steps in photorespiration,” said Paul South, a USDA/ARS postdoctoral researcher who led this work at the Carl R. Woese Institute for Genomic Biology at Illinois. “We’re building a shortcut to quickly process glycolate into glycerate instead of letting BASS6 and PLGG1 take the country roads. One of the benefits of the shortcut is that the plants don’t produce ammonia, so they don’t have to spend a lot of energy re-fixing the ammonia.”

It might not seem like much, but photorespiration is a massive problem in farming, as researchers themselves explain:

“We could feed around 200 million people with the calories lost to photorespiration each year just in the Midwestern United States,” said co-author author Berkley Walker, an Alexander von Humboldt Postdoctoral Fellow at the University of Düsseldorf, citing his recently published simulations. “While we can’t get all that yield back, even saving 5% of the energy in lost in photorespiration would be worth millions of dollars annually.”

Journal Reference: Paul F South, Berkley J Walker, Amanda P Cavanagh, Vivien Rolland, Murray Badger and Donald R. Ort — Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana. doi: http:/ / dx. doi. org/ 10. 1105/ tpc. 16. 00775

share Share

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.

A New Study Reveals AI Is Hiding Its True Intent and It's Getting Better At It

The more you try to get AI to talk about what it's doing, the sneakier it gets.

Cat Owners Wanted for Science: Help Crack the Genetic Code of Felines

Cats are beloved family members in tens of millions of households, but we know surprisingly little about their genes.