homehome Home chatchat Notifications


This is what thunder looks like (kind of)

What does lightning sound like? Thunder. Well, what does thunder look like then? It's no trick question. Like all acoustic waves, thunder can also be visualized and Maher Dayeh from the Southwest Research Institute in San Antonio was the first to turn a thunderclap into an image. His findings were shown at a meeting of the American Geophysical Union.

Tibi Puiu
May 6, 2015 @ 7:12 pm

share Share

What does lightning sound like? Thunder. Well, what does thunder look like then? It’s no trick question. Like all acoustic waves, thunder can also be visualized and Maher Dayeh from the Southwest Research Institute in San Antonio was the first to turn a thunderclap into an image. His findings were shown at a meeting of the American Geophysical Union.

You're still looking at lightning. Thunder image below. Credit: Flickr Matjs

You’re still looking at lightning. Thunder image below. Credit: Flickr Matjs

Every day, some four million lightning strikes hit the surface of the planet. Despite this, how lightning, and subsequently thunder, is formed is not completely understood at a physical level. We know one thing for sure: it comes from clouds (dust, water and ice). Ice inside the cloud rubs against each other becoming electrically polarized or charged (the exact mechanism is a bit fuzzy, which is why the whole thing is debatable). The lighter ice will move upwards, while the heavier ice will stay below separating the negative and positive charges. Just like the cloud, because there’s a lot of charge hovering around, the air below the clouds also become ionized. In turn, the ionized air charges air particle further below in a cascading effect until it eventually reaches the ground. This happens very quickly, and the sections of ionized air look very much like electrical sparks or the static electricity released when you rub your sweater against a balloon. The  ground is very conductive compared to air, and will give up a large amount of electric charge into this completed circuit (between the ground and the cloud) that causes a lot of charge to flow from the ground upwards to the cloud (this is called the return stroke and is basically what you see as lightning). This ionizes the air completely between the ground and the cloud, and this is the part you can see for miles around.

Left: long exposure photo of lightning event with downstream in green, and return stroke in purple. Right: audio signature for each return stroke. Image: Nature

Left: long exposure photo of lightning event with downstream in green, and return stroke in purple. Right: audio signature for each return stroke. Image: Nature

 

As for thunder, because the ionization of air described above happens so quickly over a large area, it causes air to move (acoustic pressure) just like a sonic boom or explosion. Now, this sound has been recorded and visualized using processing algorithms by researchers at Southwest Research Institute in Antonio, Texas. Dayeh and team first went to a military installation in Florida, then installed a launch system which would shoot a rocket with a long copper wire trailing behind. The rocket was fired into a thundercloud. Then, it was only a matter of waiting for the rocket to trigger the lightning strike and profit. The lightning traveled down the wire and eventually hit the launch platform which was surrounded 15 microphones spaced 1 meter apart. This helped build an acoustic map, which looks like a contemporary painting. In fact, Dayeh and crew were so stoked by the results they thought they had done something wrong.

“The initial constructed images looked like a colourful piece of modern art that you could hang over your fireplace. But you couldn’t see the detailed sound signature of lightning in the acoustic data,” Dr Dayeh said.

Top: lightning. Bottom: acoustic map of the thunder. Image: Nature

Top: lightning. Bottom: acoustic map of the thunder. Image: Nature

The map also provided a few insights into thunder formation, like the fact that thunderclap depends on the peak electric current flowing through the lightning bolt. [source: Nature]

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.