homehome Home chatchat Notifications


This computer clocks uses water droplets, manipulating information and matter at the same time

Computers and water don't mix well, but that didn't stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don't expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet - not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Tibi Puiu
June 10, 2015 @ 7:32 am

share Share

Computers and water don’t mix well, but that didn’t stop Manu Prakash, a bioengineering assistant professor at Stanford, to think outside the box. Using magnetic fields and droplets of water infused with magnetic nanoparticles, Prakash demonstrated a computing system that performs logic and control functions by manipulating H2O instead of electrons. Because of its general nature, the water clock can perform any operations a conventional CPU clock can. But don’t expect this water-based computer to replace the CPU in your smartphone or notebook (electrons speed vs water droplet – not a chance). Instead, it might prove extremely useful in situations where logic operations and manipulation of matter need to be performed at the same time.

Water computer

 Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics

Iron tracks, each 1 mm long, arranged at right angles to each other. This is the first fluid-based computer that controls multiple droplets simultaneously. Image: Nature Physics

As you can imagine, making a computer clock based on a fluid is no easy task. Prakash realized that one way to manipulate the flow is through an external magnetic field. He designed a series of T and I-shaped tiny pieces of iron and strategically placed them on a glass slide. Then another glass is placed on top with a layer of oil sandwiched in between. Water droplets infused with magnetic nanoparticles are then carefully infused into the system. Electromagnetic coils placed around the machine manipulate and direct the droplets, very similarly to how this ferrofluid artistic rendering work.

GIF: coils and droplets racing inside the grooves. YouTube

GIF: coils and droplets racing inside the grooves. YouTube

Depending on how they placed the metal shapes, the droplets would travel along a distinct pattern. Once the magnetic field is turned on, each rotation of the field is counted as one clock cycle. With each cycle, every drop marched exactly one step forward, as recorded in the video below.

The design of the iron tracks is essential, as Physics World reports:

“If the base was just a sheet of iron with no tracks, the droplets would travel around in circles, following the energy minima created by the field. However, by carefully designing the iron tracks and incorporating breaks at the right places, the researchers can create a “ratchet” effect whereby every complete rotation causes a droplet to move into an adjacent energy minimum. Therefore, instead of travelling in circles, a droplet moves in a specific direction through the circuit. Furthermore, by creating two tracks that are mirror images of each other, two droplets will rotate in opposite directions in response to the same field.”

Because of a combination of hydrodynamic and magnetic forces, the droplets repel each other. This is a good thing, since it keeps them separated and allows for the water-based equivalent of a digital transistor. If the droplet is in a specific location the value “1” is given, “0” if absent. Basically, this is the basis for a droplet logic gate. Since the machine works with fluids, virtually any kind of fluid chemical can be introduced into the computer. This way, scientists can sort and mix chemicals on the fly, while also performing computing operations. But the ultimate purpose isn’t to superseed a digital processor. It’s about much more than that – the “algorithmic manipulation of matter”, which enables enable us to “learn to manipulate matter faster… in a fundamentally new way.” Findings appeared in Nature Physics.

“Imagine, when you run a set of computations wherein not only information is processed but also the physical matter is algorithmically manipulated. We have just made this possible at the mesoscale,” Prakash said.

Next, Prakash and colleagues are concentrating on scaling down the design.

 

 

share Share

NASA Astronaut Snaps Rare Sprite Flash From Space and It’s Blowing Minds

A sudden burst of red light flickered above a thunderstorm, and for a brief moment, Earth’s upper atmosphere revealed one of its most elusive secrets. From 250 miles above the surface, aboard the International Space Station, astronaut Nichole “Vapor” Ayers looked out her window in the early hours of July 3 and saw it: a […]

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

How hot is too hot to survive in a city?

You're not imagining it, Mondays really are bad for your health

We've turned a social construct into a health problem.

These fig trees absorb CO2 from the air and convert it into stone

This sounds like science fiction, but the real magic lies underground

Koalas Spend Just 10 Minutes a Day on the Ground and That’s When Most Die

Koalas spend 99% of their lives in trees but the other 1% is deadly.

Lost Pirate Treasure Worth Over $138M Uncovered Off Madagascar Coast

Gold, diamonds, and emeralds -- it was a stunning pirate haul.

These Wild Tomatoes Are Reversing Millions of Years of Evolution

Galápagos tomatoes resurrect ancient defenses, challenging assumptions about evolution's one-way path.

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

Shorter days ahead as Earth's rotation speeds up unexpectedly.

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

Controversial model posits Earth and our galaxy may reside in a supervoid.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.