homehome Home chatchat Notifications


Coldest atom cloud in the world chills other matter close to absolute zero

For the first time, researchers at the University of Basel used an ultracool atomic gas to cool a very thin membrane to less than one degree Kelvin. The new technique might enable novel investigations of quantum mechanics phenomena and precision measuring devices. Coldest matter in the world lends its freeze In the ultracold world, produced […]

Dragos Mitrica
November 24, 2014 @ 6:03 pm

share Share

For the first time, researchers at the University of Basel used an ultracool atomic gas to cool a very thin membrane to less than one degree Kelvin. The new technique might enable novel investigations of quantum mechanics phenomena and precision measuring devices.

Coldest matter in the world lends its freeze

A cloud of ultracold atoms (red) is used to cool the mechanical vibrations of a millimeter-sized membrane (brown, in black frame). The mechanical interaction between atoms and membrane is generated by a laser beam and an optical resonator (blue mirror). Credit: Tobias Kampschulte, University of Basel

A cloud of ultracold atoms (red) is used to cool the mechanical vibrations of a millimeter-sized membrane (brown, in black frame). The mechanical interaction between atoms and membrane is generated by a laser beam and an optical resonator (blue mirror). Credit: Tobias Kampschulte, University of Basel

In the ultracold world, produced by methods of laser cooling and trapping, atoms move at a snail’s pace and behave like matter waves. Typically, lasers are used to trap atoms inside a vacuum chamber, almost grounding all atomic vibrations to a halt and thus lower temperature close to less than 1 millionth of a degree above absolute zero. In this state, atoms behave differently – governed by laws of spooky quantum mechanics – and move in small wave packets. This means superposition or being in several places at once.

Ultracooled atoms are usually used in so called atomic clocks that only lose a second every couple hundred millions of years. These are very useful for syncing GPS satellites, for instance, but can ultracool atoms be used to refrigerate some other matter? It’s a very interesting idea, but only if one can surpass the challenges. Even the largest ultracool atom clouds, which can number billions of particles, aren’t larger than a grain of sand. Because the surface area is so small, it’s very difficult to transfer heat and cool objects.

There are workarounds, however. Swiss researchers successfully cooled the vibrations of a millimeter-sized membrane using ultracool atoms. The membrane, a silicon nitride film of 50 nm thickness, oscillates up and down like a small square drumhead. Such mechanical oscillators are never fully at rest but show thermal vibrations that depend on their temperature. Although the membrane contains about a billion times more particles than the atomic cloud, a strong cooling effect was observed, which cooled the membrane vibrations to less than 1 degree above absolute zero, as reported in Nature Nanotechnology.

“The trick here is to concentrate the entire cooling power of the atoms on the desired vibrational mode of the membrane,” explains Dr. Andreas Jöckel, a member of the project team.

A laser light was shone which changed the vibration of the membrane and transmitted the cooling effect over a distance of several meters. The effect was amplified by an optical resonator made of two mirrors, with the membrane sandwiched in between. Previously, systems that use light to couple ultracold atoms and mechanical oscillator had been proposed theoretically, but this is the first time it’s been demonstrated experimentally.

The take away is that such a system might be employed to experience quantum mechanical system in macrosized objects – the kind that you can see with the naked eye.

It may also be possible to generate what are known as entangled states between atoms and membrane. A membrane’s vibrations could be measured with unprecedented detail, and along with the improvement would follow a new class of highly sensitive sensors for small forces and masses.

“The well-controlled quantum nature of the atoms combined with the light-induced interaction is opening up new possibilities for quantum control of the membrane,” says Treutlein.

 

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.