homehome Home chatchat Notifications


Scientists figure out how turbulent fluids make order from chaos

It's a problem Richard Feynman also addressed.

Mihai Andrei
May 28, 2019 @ 11:32 pm

share Share

For decades, physicists have been puzzled by fluids’ tendency move from disordered chaos to perfectly parallel patterns of oblique turbulent bands. This state, which has been observed numerous times, was not explained for the first time.

Although the general equations describing fluid flows are well-known, they are far from being simple. These equations, which describe most situations, are taught to physics and engineering students from all around the world — fluid dynamics is the kind of stuff that makes undergrads cry. But when things get really messy, it can leave even experience researchers scratching their heads.

For instance, when fluids become turbulent, the solutions to the equations become nonlinear and complex — chaotic, like the fluid they are describing. It’s often impossible to describe how such a turbulent fluid will evolve, especially in a longer period of time. However, physicists have observed that such a chaotic system tends to order itself, creating a structured pattern of turbulent and laminar bands.

Essentially, when a fluid is placed between two parallel plates which move in opposite directions, it creates turbulence. After a while, this initially chaotic turbulence forms types of oblique bands: some turbulent, and some calm. No known mechanism could explain this behavior or determine physical parameters such as the periodicity of this phenomenon. In his landmark physics lectures, Richard Feynman highlights this unexplained stripe pattern as an example demonstrating the need for improved theoretical tools to analyze the fluid flow equations. Intriguingly, Feynman proposed that we don’t really need new mathematics to solve this issue, we just need a different way to look at things.

A new study proved Feynman right and found why these flows form.

“As the physicist Richard Feynman predicted, the solution was not to be found in new equations, but rather within the equation that was already available to us,” explained Tobias Schneider, author of the new study. “Until now, researchers didn’t have powerful enough mathematical tools to verify this.”

Researchers used a tool called dynamical systems theory, an area of mathematics used to describe the behavior of the complex dynamical systems. They described the step-by-step behavior, calculating the equilibrium breaking points for each step. With this computationally intensive approach, they were able to explain the transition from the chaotic to the structured state.

“We can now describe the initial instability mechanism that creates the oblique pattern,” explains Florian Reetz, the study’s lead author. “We have thus solved one of the most fundamental problems in our field. The methods we developed will help clarify the chaotic dynamics of turbulent-laminar patterns in many flow problems. They may one day allow us to better control flows.”

In addition to solving a fundamental fluid mechanics problem, this doesn’t only apply to a lab setting — it could also enable researchers to better understand fluid flows in nature, designing more efficient systems to control flow-related phenomena occurring in nature.

The study has been published in Nature Communications.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.