homehome Home chatchat Notifications


The Leidenfrost effect and a cool water maze

Last week we showed you some great fluid dynamics at work – water bridges between two beakers connected to high voltage current. Water and fluids in particular sometimes behave in amazing ways under certain conditions. Today, I’d like to show another dazzling display: the Leidenfrost effect. This is a phenomenon that occurs when liquid, say […]

Tibi Puiu
October 3, 2013 @ 3:13 am

share Share

water-droplet

(c) YouTube screenshot

Last week we showed you some great fluid dynamics at work – water bridges between two beakers connected to high voltage current. Water and fluids in particular sometimes behave in amazing ways under certain conditions. Today, I’d like to show another dazzling display: the Leidenfrost effect. This is a phenomenon that occurs when liquid, say water, is in near contact with a mass significantly hotter than the liquid’s boiling point, producing an insulating vapor layer which keeps that liquid from boiling rapidly and keeps the surfaces separate. You’ve likely seen in it action countless times but never knew what’s it called. For instance, when you heat a frying pan at or above the Leidenfrost point (typically two times the boiling point of water) and then sprinkle some droplets of water to check the temperatures  the water skitters across the metal and takes longer to evaporate than it would in a skillet that is above boiling temperature, but below the temperature of the Leidenfrost point.

When this effect is coupled with jagged surfaces, you can control the direction in which the water droplets jitter. To demonstrate this, University of Bath undergraduate students Carmen Cheng and Matthew Guy built a cool maze which basically guides the water through the various cavities. Check it out in the video below.

It’s important to note that the Leidenfrost effect doesn’t necessarily work at extra boiling point temperatures. The phenomenon works at extremely low temperatures too, as long as there’s a great temperatures difference between the fluid and the other surface. For instance, in the video demonstration below a daredevil sprinkles his hand with water and then dips it in liquid nitrogen for a few seconds. In normal conditions, the hand would have been frozen stiff, but the intense temperature difference between the water at room temperature and liquid nitrogen (-346°F and -320.44°F or 63 K and 77.2 K) creates a thin film barrier protecting the hand. Don’t try this at home!

share Share

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

From the vault: Why bats don't fly in the rain

Ever wondered why you never see bats flying in the rain?

Packed Festival Crowds Aren't Chaotic — They Form Living Vortices, Which Can Be Predicted with Physics

The physics of crows explains why they sometimes move like waves.

Why Your Pasta Pot Always Has That Strange Salt Ring Inside

Researchers uncover the physics of how salt forms patterns in boiling water.

Scientists discover a third type of magnetism that could make some electronics 1,000 times faster

Altermagnetism could transform electronics, offering faster, more efficient, and sustainable alternatives to traditional magnetic materials.

Did America really split the atom? New Zealand and the UK would like to have a word

The tale of splitting the atom isn't just about America—it's a journey from New Zealand to Manchester, led by the brilliant mind of Ernest Rutherford, the true father of nuclear physics.

The octopus and the beer bottle: how intelligent octopuses are making the most of polluted oceans

Someone's thrash is another one's treasure - this old saying has an entirely different meaning for an octopus.