homehome Home chatchat Notifications


Synthetic magnetic monopole simulated by quantum cloud

The scientists created an isolated monopole – a north pole in a stimulated magnetic field, realizing a thought experiment that was theoretically foreseen over eighty years ago. The difference that has been artificially pointed out by the scientists comes to prove that in a natural environment north and south magnetic poles are exclusively connected and […]

livia rusu
February 5, 2014 @ 12:50 pm

share Share

The scientists created an isolated monopole – a north pole in a stimulated magnetic field, realizing a thought experiment that was theoretically foreseen over eighty years ago. The difference that has been artificially pointed out by the scientists comes to prove that in a natural environment north and south magnetic poles are exclusively connected and when we cut a bar magnet in half the result is two different magnets with two different poles, rather than separate north and south poles for each half. And while this is an interesting discovery, it’s also worth mentioning that the electrostatic positive and negative charges do exist independently. There has been a sort of scientific anticipation of the magnetic monopoles in 1931, and Paul Dirac – the physicist who suggested this possibility, thus being certain of the impossibility to mathematically link the concepts – that also suggested a possible explanation for the charge in discrete packages as multiples of a charge of a single electron.

What the research have indicated is that magnetic monopoles were forged as elementary particles because of the Big Bang but the replica was never designed in a laboratory, neither detected in reality. The research that has been published in Nature today has represented the monopole suggested by Dirac back in 1931, through simulation in a cloud of super-cold rubidium atoms.

The team, supervised by David Hall at Amherst College in Massachusetts, followed the thesis submitted by Ville Pietila and Mikko Mottonen from Aalto University in Finland as a second premises, according to which by using external magnetic fields a point like topological defects can be imprinted on the spin texture of a dilute Bose-Einstein Condensate (BEC). The topological defect is accompanied with a vortex filament corresponding to the Dirac string of a magnetic monopole, thanks to the symmetries of the condensate order parameter. Consequently the vorticity in the condensate is the same as the magnetic field of a magnetic monopole, thus making an ideal analogue to Dirac’s monopole.

This discovery was used by Hall’s team to simulate the behavior of an electron in the vicinity of a magnetic monopole while using a gas of around a million rubidium atoms, cooled to less than 100-billionths of a degree above absolute zero, point in which the atoms begin to lose the individual identities and become part of a collective quantum state of matter also known as BEC.

Other attempts of creating monopole analogues have been registered by the scientific community in 2009, when a team of physicists observed magnetic monopoles in spin ice (a crystalline material), which seems to fill with atom-sized classical monopoles when cooled close  to absolute zero. Although these monopoles are truly magnetic, they can’t be analyzed individually. Another example of comparable analogue is superfluid helium, although with less direct observations.

 

 

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.