homehome Home chatchat Notifications


Hints of superconductivity at room temperature might hold far-reaching consequences

By doping graphite, researchers in Germany have reported that they found tantalizing hints of superconductivity at room-temperatures and far above, like water boiling point (100°C.). Superconductivity is a property which describes zero resistance electrical conductivity, however this property has only been observed at temperatures lower than -100°C. Graphite has been found to exhibit superconductivity in […]

Tibi Puiu
September 19, 2012 @ 8:08 am

share Share

By doping graphite, researchers in Germany have reported that they found tantalizing hints of superconductivity at room-temperatures and far above, like water boiling point (100°C.). Superconductivity is a property which describes zero resistance electrical conductivity, however this property has only been observed at temperatures lower than -100°C.

Graphite powder

Graphite powder.

Graphite has been found to exhibit superconductivity in the past, when doped with elements that provide additional free electrons. For instance, calcium doped graphite superconducts at up to 11.5 kelvin (about -260 °C), while 60 kelvin could be reached if enough free electrons were made available.

With this in mind Pablo Esquinazi and his colleagues at the University of Leipzig sought to bend the superconductivity limit. Their first attempts rendered some very interesting results with an artificial type of bulk graphite known as pyrolytic graphite, which they managed to superconduct at 100 kelvin. They found that electrons concentrate in high density at the interfaces between neighbouring thin segments of graphite. Graphite an allotrope and most stable form of carbon, is made up of layers of carbon atoms arranged in hexagonal lattices, and is considered a very good electrical conductor.

For their next attempt, the researchers took a hit a carbon powder, which they mixed with water. Thus, they placed 100 milligrams of pure graphite powder made up of flakes a few hundredths of a millimetre long and tens of nanometres thick into 20 millilitres of distilled water. After mixing, the powder was filtered and dried. When the sample was magnetized, the scientists observed that the sample continued to remain magnetized even after the magnetic field was removed. This is either a characteristic of superconductivity or ordinary ferromagnetism.

To rule out the latter, the scientists probed how the magnetization varied with the strength of the applied field and with temperature. Their results were on par with the first high-temperature oxide superconductors, discovered in the 1980s.

Now, no actual zero resistance electric conductivity was proven, nor did the researchers show that the magnetic fields are absent from the interior of the flakes — a fundamental characteristic of superconductors. However, what’s interesting though is that this apparent superconductivity wasn’t lost at very high temperatures. The team reports that the superconducting state remained at temperatures up to about 400 kelvin, or around 130 °C, well above the boiling point of water. Even Esquinazi admits that the claim “sounds like science fiction”, nevertheless their findings are extremely interesting and later scrutiny of the results should prove to be even more interesting. If indeed doped graphite powder is found to superconduct, than the ramifications of this scientific find would be enormous.

The report was published in the journal Advanced Materials.

source: Nature

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.