homehome Home chatchat Notifications


Standard Model of Physics might be revamped after experimental findings raise doubts

The Standard Model of Physics is currently the accepted model which describes how sub-atomic particles behave and interact in the Universe. A recent analysis of data gathered by a decade-long experiment at the US Department of Energy’s SLAC National Accelerator Laboratory, shows a certain particle decay happening at a pace far exceeding that predicted by […]

Tibi Puiu
June 19, 2012 @ 9:04 am

share Share

The Standard Model of Physics is currently the accepted model which describes how sub-atomic particles behave and interact in the Universe. A recent analysis of data gathered by a decade-long experiment at the US Department of Energy’s SLAC National Accelerator Laboratory, shows a certain particle decay happening at a pace far exceeding that predicted by the Standard Model. This suggests possible flaws in the current Standard Model of Physics, which could mandate a reconfiguration of the model.

The data comes from the BaBar experiment, based at the DOE’s SLAC National Accelerator Laboratory, which observed particle collisions from 1999 to 2008. Findings suggest a particular type of particle decay called ‘B to D-star-tau-nu‘ happens more often than the Standard Model says it should.

“The excess over the Standard Model prediction is exciting,” said BaBar spokesperson Michael Roney of the University of Victoria in Canada. “But before we can claim an actual discovery, other experiments have to replicate it and rule out the possibility this isn’t just an unlikely statistical fluctuation.”

“If the excess decays shown are confirmed, it will be exciting to figure out what is causing it,” said BaBar physics coordinator Abner Soffer, associate professor at Tel Aviv University. “We hope our results will stimulate theoretical discussion about just what the data are telling us about new physics.”

SLAC National Accelerator Laboratory is home to a two-mile linear accelerator—the longest in the world. Originally a particle physics research center, SLAC is now a multipurpose laboratory for astrophysics, photon science, accelerator and particle physics research.

SLAC National Accelerator Laboratory is home to a two-mile linear accelerator—the longest in the world. Originally a particle physics research center, SLAC is now a multipurpose laboratory for astrophysics, photon science, accelerator, and particle physics research.

The BaBar experiment might hold implications for the Higgs bosons properties as well – a hypothetical elementary particle predicted by the Standard Model (SM) of particle physics, which scientists believe is responsible for granting particles mass. The BaBar study predicts Higgs bosons interact more strongly with heavier particles – such as the B mesons, D mesons, and tau leptons – than lighter ones.

“If the excess decays shown are confirmed, it will be exciting to figure out what is causing it,” says BaBar physics coordinator Abner Soffer, associate professor at Tel Aviv University.

“We hope our results will stimulate theoretical discussion about just what the data are telling us about new physics.” added Soffer.

The team of researchers involved in the BaBar experiment note that upcoming experiments might lead to the confirmation of these findings. If the Belle experiment at the Japanese high-energy physics laboratory KEK replicates the finding, “the combined significance could be compelling enough to suggest how we can finally move beyond the Standard Model,” said researchers.

The findings were presented at the 10th annual Flavor Physics and Charge-Parity Violation Conference in Hefei, China, and were also published in the journal Physical Review Letters.

share Share

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]