homehome Home chatchat Notifications


These spiders have super-black patches to help their other parts vibrant and colorful

Birds of Paradise have similar structures.

Mihai Andrei
May 15, 2019 @ 6:55 pm

share Share

Spiders aren’t the prettiest bunch of creatures out there, but you have to admire the peacock spider. With a vibrant display of blue, red, and orange spots, male peacock spiders go to great lengths to attract female partners, showcasing their brilliant colors through elaborate dances.

But how are the colors so vibrant in the first place?

Extreme mating competition may have produced these bright patches, as well as the dark colors that accentuate them. Image credits: Jurgen Otto.

To get to the bottom of this, Harvard researchers analyzed microscopic bumps on the spiders’ exoskeleton, finding that the key is actually an optical illusion: they have ultra-dark patches that help accentuate the other colors.

The two species of peacock spiders analyzed (Maratus speciosus and M. karrie) have naturally black patches, but they also use another trick: tiny, tightly-packed bumps called microlenses. These microlenses are so effective at absorbing light that they only reflect 0.5% of the light they receive, rivaling the darkest materials ever created by humans.

These microstructures are behind the super-black patches.Credits: McCoy et al, 2019.

The tiny bumps bounce light around so that very little of it is reflected back, and the vast majority is diffracted outside of the field of view of an onlooker (say, an interested female). Surprisingly, this type of structure is very similar to that of human-made solar panels, scientists note. These super-black patches are also seen in a number of other creatures, including birds-of-paradise, leaving researchers to wonder if this is an example of convergent evolution (the independent evolution of the same feature by multiple creatures). Just like the spiders, birds-of-paradise blend pitch-dark surfaces with dazzling colors and elaborate mating dances.

“The microlenses of super black cuticle in peacock spiders bear a striking resemblance to anti-reflective surface ornamentation that enhances absorption and reduces specular reflectance in other organisms—including flower petals, tropical shade plant leaves, light-sensitive brittlestar arms and ommatidea in moth eyes,” write Harvard University evolutionary biologist Dakota McCoy and colleagues in the new study.

“We hypothesize that super black evolved in peacock spiders and birds of paradise convergently through a shared sensory bias intrinsic to colour perception.”

Brilliant colors in peacock spiders (a–g), and a closely related shiny black spider (h). Credits: McCoy et al, 2019.

While not unique, this is a very rare type of structure, researchers explain.

“In most organisms, melanin pigments produce normal black colour with white, specular highlights (e.g. glossy hair). By contrast, structural super black in peacock spiders—as well as birds, butterflies, snakes, and human-made materials —creates a featureless black surface with no highlights.”

Whether or not this is really an example of convergent evolution remains to be further studied. In the particular case of the spider, researchers hypothesize that the extreme competition between male peacock spiders is responsible for producing these extremely bright colors and the light-absorbing structures that further accentuate them.

The study has been published in the Proceedings of the Royal Society B.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.