homehome Home chatchat Notifications


Researchers capture sound from atoms, opening new doors to quantum research

Most quantum research is focused on studying interactions between light and atoms, a field known as quantum optics. Researchers at Chalmers University of Technology in Sweden took an alternate route and demonstrated for the first time that acoustic waves could be used to communicate with an atom. The findings could provide an important stepping stone for […]

Tibi Puiu
September 12, 2014 @ 8:36 am

share Share

On the right, an artificial atom generates sound waves consisting of ripples on the surface of a solid. The sound, known as a surface acoustic wave (SAW) is picked up on the left by a "microphone" composed of interlaced metal fingers. According to theory, the sound consists of a stream of quantum particles, the weakest whisper physically possible. The illustration is not to scale. Image: Philip Krantz, Krantz NanoArt.

On the right, an artificial atom generates sound waves consisting of ripples on the surface of a solid. The sound, known as a surface acoustic wave (SAW) is picked up on the left by a “microphone” composed of interlaced metal fingers. According to theory, the sound consists of a stream of quantum particles, the weakest whisper physically possible. The illustration is not to scale. Image: Philip Krantz, Krantz NanoArt.

Most quantum research is focused on studying interactions between light and atoms, a field known as quantum optics. Researchers at Chalmers University of Technology in Sweden took an alternate route and demonstrated for the first time that acoustic waves could be used to communicate with an atom. The findings could provide an important stepping stone for harnessing quantum effects in the ‘real’, macro world with potential applications in quantum computing and more.

“We have opened a new door into the quantum world by talking and listening to atoms”, said Per Delsing, head of the experimental research group, in a press release. “Our long term goal is to harness quantum physics so that we can benefit from its laws, for example in extremely fast computers. We do this by making electrical circuits which obey quantum laws, that we can control and study.”

The sound of an atom

The quantum electrical circuit that the Swedish scientists built essentially acts like an artificial atom – it can become charged with electricity and release particles, just like a regular atom, as described in the journal Science. While other projects have successfully demonstrated artificial atoms that release photons (particles of light), this is the first time that such a quantum system was shown to emit and absorb energy in the form of sound particles.

Microscope image: This is a zoom-in of the artificial atom, with its integrated Superconducting Quantum Interference Device (SQUID) in violet. The SQUID gives the atom its quantum properties, and the fingers sticking up to the left provide the coupling to sound waves.

Microscope image: This is a zoom-in of the artificial atom, with its integrated Superconducting Quantum Interference Device (SQUID) in violet. The SQUID gives the atom its quantum properties, and the fingers sticking up to the left provide the coupling to sound waves. Image: Martin Gustafsson and Maria Ekström

The device they employed is made of a substrate of gallium arsenide (GaAs) and contains two vital components: a superconducting circuit that constitutes the artificial atom and an interdigital transducer (IDT), which converts electrical microwaves to sound and vice versa. The sound waves used in the experiment were surface acoustic waves (SAWs), which can be visualised on the surface of a solid, while the whole demonstration was performed at very low temperatures, near absolute zero (20 millikelvin), so that energy in the form of heat does not disturb the atom. The low temperature is also essential to make materials exhibit superconductive properties.  Superconducting materials can conduct electricity with no resistance, which means that they can carry a current indefinitely without losing any energy. Such materials are considered to be part of the new suit of electrical technology set to change the world in the future – that if scientists can find a way to make them work at near room temperature without them losing their properties.

Because the particular sound waves used in the experiment travel a lot slower than light (100,000 times slower), scientists can better control the quantum phenomena involved. This is because an atom that interacts with light waves is always much smaller than the wavelength. However, compared to the wavelength of sound, the atom can be much larger, hence it can be controlled easier.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.