homehome Home chatchat Notifications


Self-healing artificial muscle made at Stanford University

The closest we've come to natural muscles is a novel elastomer developed at Stanford University, Palo Alto that can stretch 45 times its length and return to its original size. It's also self-healing.

Tibi Puiu
April 19, 2016 @ 7:35 pm

share Share

There’s nothing like biological muscles, but the synthetic variety is getting mighty close. Scientists made artificial muscles from all sorts of materials, from nanotech yarn that’s 85 times more powerful than natural muscles, to onions that can be bent and stretched much like a muscle. The closest we’ve come to natural muscles is a novel elastomer developed at Stanford University, Palo Alto that can stretch 45 times its length and return to its original size. It’s also self-healing.

When cut in half, the elastomer can join back if the edges are placed closed enough. Credit: Cheng-Hui Li, Stanford University

When cut in half, the elastomer can join back if the edges are placed close enough. Credit: Cheng-Hui Li, Stanford University

Materials chemist Zhenan Bao and colleagues found the right balance of stretching and strength in Fe-Hpdca-PDMS — a rubber-like material comprised of entangled polymer chains made of silicon, oxygen, nitrogen and carbon atoms, all sprinkled with some iron salt.

The iron is essential to the elastomer’s integrity as it bonds to the oxygen and nitrogen, joining polymer chains in the process like tied shoe laces. The polymer chains are thus linked both to themselves and each other allowing the chains to move, and the material as a whole to stretch.

After the material is stretched, the crosslinks return to their original size.

The most remarkable ability of Stanford’s artificial muscle though is by far the self-healing capability. If you poke a hole in the material, the material will cover it up. That’s because the iron atoms on one side of the hole are attracted to the oxygen and nitrogen atoms on the other. In only 72 hours, a micro-hole is self-healed. Even when the researchers cut the material in half, the cut edges joined back together if these were placed close enough, still retaining 90 percent of its stretchability.

It’s not perfect, though. For artificial muscles to be used in a prosthetic or in the soft limb of a robot, these need to be responsive to electric fields. Stanford’s artificial muscle changes in length by only 2% when an electric field is applied, versus 40 percent in the case of biological muscle.

“In our case, the goal was not to make the best artificial muscle, but rather to develop new materials design rules for stretchable and self-healing materials,” Bao explains. “Artificial muscle is one potential application for our materials.”

Combined with artificial skin that can ‘feel’ or even sprout hair and sweat, Bao’s elastomer could form a very interesting artificial system that mimics the real deal. The remarkable self-healing potential makes it an interesting solution for sensors that need to be placed in extreme conditions where damage is common.

Findings appeared in the journal Nature Chemistry.

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.