homehome Home chatchat Notifications


Scientists Uncover the Ideal Physique for Keeping a Hula Hoop Spinning

The science of hula hooping offers insights into energy, robotics, and human movement.

Tibi Puiu
January 6, 2025 @ 1:17 pm

share Share

woman hoola hooping
Image via Flickr.

A hula hoop is a dance against gravity. Its rhythmic twirl is more than just a child’s game; it inspires fitness enthusiasts and creates dazzling performers. But beneath the simple spinning plastic ring lies a complex interplay of forces that has, until now, remained mostly unexplored. A team of mathematicians at New York University has finally cracked the physics of hula hooping, revealing secrets that extend far beyond playgrounds.

The Physics of Play

Hula hooping became a popular sensation in the 1950s, but for NYU researchers, it posed a timeless question: How does the hoop stay up? “We were surprised that an activity as popular, fun, and healthy as hula hooping wasn’t understood even at a basic physics level,” said Leif Ristroph, the study’s senior author and an associate professor at NYU’s Courant Institute of Mathematical Sciences.

The team tackled this puzzle in their Applied Mathematics Laboratory, where they devised their own robotic hoopers. These miniature models featured gyrating 3D-printed shapes—cones, cylinders, and hourglasses—all designed to mimic human forms at one-tenth the size. Rubberized surfaces ensured friction with a rigid plastic hoop, while high-speed cameras captured the dance of physics in real-time.

Their findings, published in the Proceedings of the National Academy of Sciences, revealed that successful hula hooping hinges on two conditions. First, the hoop’s orbit must synchronize with the gyrating body, requiring an initial push to match its speed and direction. But synchronization alone isn’t enough. Keeping the hoop aloft optimally demands a specific body type: one with sloping hips to push the hoop upward and a curved waist to stabilize its motion.

What Shapes Success?

This is taken from high-speed video of the experiments on a robotic hula hooper, whose hourglass form holds the hoop up and in place. Credit: NYU’s Applied Mathematics Lab.

In their experiments, the team discovered that shape is everything. Hourglass-shaped bodies excelled, while cylindrical and conical forms failed to keep the hoop spinning. “Our results might explain why some people are natural hoopers and others seem to have to work extra hard,” Ristroph explained.

Successful hula hooping requires a body type with the right slope and curvature. Credit: NYU’s Applied Mathematics Lab

The researchers translated their video recordings into mathematical models, which pinpointed the dynamics behind the hoop’s stability. They noted that slight perturbations—like a wobble in the gyration—could send the hoop climbing or falling. Yet, with the right form, these movements balance out, allowing the hoop to stay in motion.

“The math and physics involved are very subtle,” said Ristroph.

The team’s work could inspire innovations in robotics, such as machines that extract energy from vibrations or move objects without gripping them. These principles might even lead to more efficient industrial robots or new ways to harness energy from mechanical motion.

Beyond the Hoop

Why study the physics of a toy? For the NYU team, it’s first and foremost about curiosity. “As we made progress on the research, we realized that the knowledge gained could be useful in inspiring engineering innovations,” said Ristroph.

Their study highlights how play and science often intertwine. Something as simple as a hula hoop can lead to breakthroughs with far-reaching applications. In this case, the art of twirling a hoop offers a glimpse into the mechanics of motion—and perhaps the future of technology.

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.