homehome Home chatchat Notifications


Scientists image atoms with record resolution close to absolute physical limits

The resolution is so fine-tuned, the only blurred thing in the image is the thermal jiggling of the atoms themselves.

Tibi Puiu
December 30, 2021 @ 3:05 pm

share Share

An electron ptychographic reconstruction of a praseodymium orthoscandate (PrScO3) crystal, zoomed in 100 million times. Credit: Cornell University.

Physicists at Cornell University have pushed the boundaries of atomic imaging by pushing the resolution of an electron microscope by a factor of two. While many modern smartphones have high-resolution cameras that allow you to zoom in a lot, they’re no match for this setup that can reconstruct ultraprecise images with one-trillionth of a meter precision. You can see individual atoms and the chemical bonds in molecules.

The researchers, led by Professor David Muller, devised an electron microscope pixel array detector and state-of-the-art 3D reconstruction algorithms to take laser-precise images of atoms. The resolution is so sharp that the only blurred element is the thermal jiggling of the atoms themselves.

“This doesn’t just set a new record,” Muller said. “It’s reached a regime which is effectively going to be an ultimate limit for resolution. We basically can now figure out where the atoms are in a very easy way. This opens up a whole lot of new measurement possibilities of things we’ve wanted to do for a very long time,” Muller said.

The breakthrough hinges on a computer-algorithm-driven technique known as ptychography, which works by scanning overlapping scattering patterns from a sample and then looking for changes in the overlapping region.

“We’re chasing speckle patterns that look a lot like those laser-pointer patterns that cats are equally fascinated by,” Muller said. “By seeing how the pattern changes, we are able to compute the shape of the object that caused the pattern.”

The detector used by the electron microscope is very slightly defocused on purpose. This way the blurred beam can capture the widest range of data possible. The data is then used to reconstruct a sharp image of the sample via complex algorithms.

“With these new algorithms, we’re now able to correct for all the blurring of our microscope to the point that the largest blurring factor we have left is the fact that the atoms themselves are wobbling, because that’s what happens to atoms at finite temperature,” Muller said. “When we talk about temperature, what we’re actually measuring is the average speed of how much the atoms are jiggling.”

Due to the jiggling of the atoms, the researchers claim that their achievement is almost at the physical lower bound of atomic imaging. Theoretically, they could break their own record and achieve an even higher resolution by freezing the sample close to absolute zero temperature. However, even at close to zero, there are still quantum fluctuations and the improvements would only be marginal at best anyway. 

Electron ptychography will allow scientists to identify individual atoms in 3-D space that may be obscured by other imaging methods. Immediate applications include detecting impurities in samples, as well as imaging them and their vibrations. For the industry, this is particularly useful when assessing the quality of semiconductors, catalysts, and sensitive quantum materials meant for quantum computers.

“We want to apply this to everything we do,” said Muller.”Until now, we’ve all been wearing really bad glasses. And now we actually have a really good pair. Why wouldn’t you want to take off the old glasses, put on the new ones, and use them all the time?”

The findings appeared in the journal Science.

This article originally appeared in May 2021.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.