homehome Home chatchat Notifications


Scientists image atoms with record resolution close to absolute physical limits

The resolution is so fine-tuned, the only blurred thing in the image is the thermal jiggling of the atoms themselves.

Tibi Puiu
December 30, 2021 @ 3:05 pm

share Share

An electron ptychographic reconstruction of a praseodymium orthoscandate (PrScO3) crystal, zoomed in 100 million times. Credit: Cornell University.

Physicists at Cornell University have pushed the boundaries of atomic imaging by pushing the resolution of an electron microscope by a factor of two. While many modern smartphones have high-resolution cameras that allow you to zoom in a lot, they’re no match for this setup that can reconstruct ultraprecise images with one-trillionth of a meter precision. You can see individual atoms and the chemical bonds in molecules.

The researchers, led by Professor David Muller, devised an electron microscope pixel array detector and state-of-the-art 3D reconstruction algorithms to take laser-precise images of atoms. The resolution is so sharp that the only blurred element is the thermal jiggling of the atoms themselves.

“This doesn’t just set a new record,” Muller said. “It’s reached a regime which is effectively going to be an ultimate limit for resolution. We basically can now figure out where the atoms are in a very easy way. This opens up a whole lot of new measurement possibilities of things we’ve wanted to do for a very long time,” Muller said.

The breakthrough hinges on a computer-algorithm-driven technique known as ptychography, which works by scanning overlapping scattering patterns from a sample and then looking for changes in the overlapping region.

“We’re chasing speckle patterns that look a lot like those laser-pointer patterns that cats are equally fascinated by,” Muller said. “By seeing how the pattern changes, we are able to compute the shape of the object that caused the pattern.”

The detector used by the electron microscope is very slightly defocused on purpose. This way the blurred beam can capture the widest range of data possible. The data is then used to reconstruct a sharp image of the sample via complex algorithms.

“With these new algorithms, we’re now able to correct for all the blurring of our microscope to the point that the largest blurring factor we have left is the fact that the atoms themselves are wobbling, because that’s what happens to atoms at finite temperature,” Muller said. “When we talk about temperature, what we’re actually measuring is the average speed of how much the atoms are jiggling.”

Due to the jiggling of the atoms, the researchers claim that their achievement is almost at the physical lower bound of atomic imaging. Theoretically, they could break their own record and achieve an even higher resolution by freezing the sample close to absolute zero temperature. However, even at close to zero, there are still quantum fluctuations and the improvements would only be marginal at best anyway. 

Electron ptychography will allow scientists to identify individual atoms in 3-D space that may be obscured by other imaging methods. Immediate applications include detecting impurities in samples, as well as imaging them and their vibrations. For the industry, this is particularly useful when assessing the quality of semiconductors, catalysts, and sensitive quantum materials meant for quantum computers.

“We want to apply this to everything we do,” said Muller.”Until now, we’ve all been wearing really bad glasses. And now we actually have a really good pair. Why wouldn’t you want to take off the old glasses, put on the new ones, and use them all the time?”

The findings appeared in the journal Science.

This article originally appeared in May 2021.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.