homehome Home chatchat Notifications


Scientists image atoms with record resolution close to absolute physical limits

The resolution is so fine-tuned, the only blurred thing in the image is the thermal jiggling of the atoms themselves.

Tibi Puiu
December 30, 2021 @ 3:05 pm

share Share

An electron ptychographic reconstruction of a praseodymium orthoscandate (PrScO3) crystal, zoomed in 100 million times. Credit: Cornell University.

Physicists at Cornell University have pushed the boundaries of atomic imaging by pushing the resolution of an electron microscope by a factor of two. While many modern smartphones have high-resolution cameras that allow you to zoom in a lot, they’re no match for this setup that can reconstruct ultraprecise images with one-trillionth of a meter precision. You can see individual atoms and the chemical bonds in molecules.

The researchers, led by Professor David Muller, devised an electron microscope pixel array detector and state-of-the-art 3D reconstruction algorithms to take laser-precise images of atoms. The resolution is so sharp that the only blurred element is the thermal jiggling of the atoms themselves.

“This doesn’t just set a new record,” Muller said. “It’s reached a regime which is effectively going to be an ultimate limit for resolution. We basically can now figure out where the atoms are in a very easy way. This opens up a whole lot of new measurement possibilities of things we’ve wanted to do for a very long time,” Muller said.

The breakthrough hinges on a computer-algorithm-driven technique known as ptychography, which works by scanning overlapping scattering patterns from a sample and then looking for changes in the overlapping region.

“We’re chasing speckle patterns that look a lot like those laser-pointer patterns that cats are equally fascinated by,” Muller said. “By seeing how the pattern changes, we are able to compute the shape of the object that caused the pattern.”

The detector used by the electron microscope is very slightly defocused on purpose. This way the blurred beam can capture the widest range of data possible. The data is then used to reconstruct a sharp image of the sample via complex algorithms.

“With these new algorithms, we’re now able to correct for all the blurring of our microscope to the point that the largest blurring factor we have left is the fact that the atoms themselves are wobbling, because that’s what happens to atoms at finite temperature,” Muller said. “When we talk about temperature, what we’re actually measuring is the average speed of how much the atoms are jiggling.”

Due to the jiggling of the atoms, the researchers claim that their achievement is almost at the physical lower bound of atomic imaging. Theoretically, they could break their own record and achieve an even higher resolution by freezing the sample close to absolute zero temperature. However, even at close to zero, there are still quantum fluctuations and the improvements would only be marginal at best anyway. 

Electron ptychography will allow scientists to identify individual atoms in 3-D space that may be obscured by other imaging methods. Immediate applications include detecting impurities in samples, as well as imaging them and their vibrations. For the industry, this is particularly useful when assessing the quality of semiconductors, catalysts, and sensitive quantum materials meant for quantum computers.

“We want to apply this to everything we do,” said Muller.”Until now, we’ve all been wearing really bad glasses. And now we actually have a really good pair. Why wouldn’t you want to take off the old glasses, put on the new ones, and use them all the time?”

The findings appeared in the journal Science.

This article originally appeared in May 2021.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution