homehome Home chatchat Notifications


New curing method paves the way to cheap, non-toxic, plastic radiation shielding

This could be used in fields ranging from medicine to space exploration.

Alexandru Micu
May 12, 2020 @ 7:44 pm

share Share

New research from the North Carolina State University points to a polymer embedded with bismuth trioxide particles as a possible replacement for today’s toxic radiation shielding materials such as lead.

Image via Pixabay.

The material is lightweight, can be manufactured quickly, and is effective at blocking ionizing radiation such as gamma rays. Such properties make it an ideal material for a wide range of applications ranging from medicine to space exploration.

No radiation past this point

“Traditional radiation shielding materials, like lead, are often expensive, heavy and toxic to human health and the environment,” says Ge Yang, an assistant professor of nuclear engineering at NC State and corresponding author of a paper on the work.

“This proof-of-concept study shows that a bismuth trioxide compound could serve as effective radiation shielding, while mitigating the drawbacks associated with traditional shielding materials.”

In the paper, the team details how this material — a “poly (methyl methacrylate) (PMMA) / Bi2O3 composite” — can be produced using a curing method that relies on ultraviolet (UV) light instead of traditional, high-temperature approaches, which are expensive and can take “even days” to perform. The UV method, by contrast, can cure this material in “the order of minutes at room temperature,” Yang explains.

Through their method, the team constructed samples of this polymer that contained up to 44% bismuth trioxide by weight. PMMA itself, which is standard ‘acrylic plastic’ lends optical clarity, abrasion resistance, hardness, and stiffness to the mixture, while the bismuth compound does all of the radiation shielding. It also “improved the micro-hardness to nearly seven times that of the pure PMMA”, the team explains. Microhardness is the hardness of a material as tested with a force of less than one Newton.

A 3D tomography of PMMA composite with 15.6% bismuth oxide by weight. (b) shows cross-section of the black phase, which contains more oxides and provides most of the radiation shielding, and (c) is a cross-section of the white phase, with more PMMA polymer.
Image credits Da Cao, Ge Yang, Mohamed Bourham, Dan Moneghan, (2020), NETech.

Lab tests showed that different concentrations of bismuth oxide provide varying levels of radiation shielding, with the one detailed here (44% weight) offering “excellent mechanical and shielding properties”.

“This is foundational work,” Yang says. “We have determined that the compound is effective at shielding gamma rays, is lightweight, and is strong. We are working to further optimize this technique to get the best performance from the material. We are excited about finding a novel radiation shielding material that works this well, is this light and can be manufactured this quickly.”

For the immediate future, the team wants to continue exploring the properties of the material, including its behavior under different heat levels.

The paper “Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites” has been published in the journal Nuclear Engineering and Technology.

share Share

Scientists Just Built a Mini Human Nervous System That Can Process Pain in a Dish in World First

This lab-made nervous system shows how we feel pain — without hurting anyone.

This Ancient Runestone Might Be the Oldest Ever Found — and It’s Full of Mystery

Its cryptic inscriptions could rewrite the early history of runic writing in Scandinavia.

Trump-Appointed EPA Plans to Let Most Polluters Stop Reporting CO2 Emissions

One expert said it's like turning off a dying patient's monitor.

Denisovan Jaw Found in Taiwan Strait Changes the Human Migration Map

Our elusive ancient cousins once roamed much further east than previously believed

The secret to making plant-based milk tastier and healthier: bacteria

Instead of masking off flavors with sugar, salt, or artificial additives, companies can let bacteria do the work.

A 30,000-Year-Old Feather Is a First-of-Its-Kind Fossil

A new analysis of a fossil found in 1889 has unveiled the presence of zeolites—and an entirely new mineralization method.

This Sensor Box Can Detect Deadly Bird Flu in 5 Minutes. But It Won't Stop the Current Outbreak

The biosensor can detect viral airborne particles.

In 2013, dolphins in Florida starved. Now, we know why

The culprit is a very familiar one. It's us.

Researchers can't rule out the possibility of life existing on Titan

It wouldn't be very much, but it's exciting anyway.

The Earth's oceans were once green. Then, cyanobacteria and iron came in

A pale green dot?