homehome Home chatchat Notifications


Understanding a unique type of magnetism

Using low-frequency laser pulses, a team of researchers has carried out the first measurements on a mineral called herbertsmithite. This (pretty awesome looking) mineral features a unique kind of magnetism. Insite it, magnetic elements constantly fluctuate, leading to an exotic magnetic state, unlike conventional magnetism in which all magnetic forces allign in the same direction […]

Mihai Andrei
September 24, 2013 @ 11:12 am

share Share

Using low-frequency laser pulses, a team of researchers has carried out the first measurements on a mineral called herbertsmithite. This (pretty awesome looking) mineral features a unique kind of magnetism.

hebertsmithe

A sample of the mineral herbertsmithite.
PHOTO: ROB LAVINSKY/IROCKS.COM

Insite it, magnetic elements constantly fluctuate, leading to an exotic magnetic state, unlike conventional magnetism in which all magnetic forces allign in the same direction and also unlike antiferromagnets, where adjacent magnetic elements align in opposite directions, practically nullifying the material’s magnetic field.

A joint team from MIT, Boston College and Harvard University has successfully carried out these measurements, revealing a signature in the optical conductivity of the spin-liquid state that reflects the influence of magnetism on the motion of electrons; the quantum spin liquid is a state that can be achieved in a system of interacting quantum spins – the term “liquid” simply refers to a disordered state of matter. This supports a number of theoretical predictions which had been made. Nuh Gedik, the Biedenharn Career Development Associate Professor of Physics at MIT and lead author of the study was thrilled:

“We think this is good evidence,” Gedik says, “and it can help to settle what has been a pretty big debate in spin-liquid research.”

Another sample, via Wikipedia.

Another sample, via Wikipedia.

Daniel Pilon, a graduate student also at MIT was also happy to be part of the first experiment which tackles this unique type of magnetism:

“Theorists have provided a number of theories on how a spin-liquid state could be formed in herbertsmithite,” Pilon explains. “But to date there has been no experiment that directly distinguishes among them. We believe that our experiment has provided the first direct evidence for the realization of one of these theoretical models in herbertsmithite.”

 

Quantum spin liquids such as this one have been proposed all the way back in 1973, but up until a few years, this was only considered to be a theoretical state. It took almost 40 years to actually discover this mineral which exhibits such a state.

These exciting discoveries will remain in the lab for now, as no forseeable direct advantage ca be drawn from this state. Still, these are only the first steps in what is a thrilling new field.

Gedik says, “Although it is hard to predict any potential applications at this stage, basic research on this unusual phase of matter could help us to solve some very complicated problems in physics, particularly high-temperature superconductivity, which might eventually lead to important applications.” In addition, Pilon says, “This work might also be useful for the development of quantum computing.”

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.