homehome Home chatchat Notifications


Long standing physics mystery apparently solved: light behaves both as particle and wave

Is light a wave, or is it made of particles? This question has puzzled since the dawn of modern physics, because somehow, light seemed to behave preferentially, depending on the situation – it was either a wave or a particle, but never both at the same time. This new quantum experiment seems to show that […]

Mihai Andrei
November 9, 2012 @ 10:30 am

share Share

Is light a wave, or is it made of particles? This question has puzzled since the dawn of modern physics, because somehow, light seemed to behave preferentially, depending on the situation – it was either a wave or a particle, but never both at the same time. This new quantum experiment seems to show that light can be both simultaneously, possibly creating a new dimension of modern physics which could explain the true nature of light.

Wave–particle duality postulates that all particles exhibit both wave and particle properties – a central concept in quantum mechanics. Isaac Newton advocated that light was made of particles, but then James Clerk Maxwell unified the theory of magnetism and electricity, relying on a wave model of light. But in 1905, Albert Einstein explained the photoelectric effect by proving light was a particle. So how can this be? Subsequently, depending on the tested effect, light behaved either as a particle or a wave.

Ultimately, there’s a really good reason to believe not only light, but every subatomic particle exhibits this duality, and this theory is the foundation of quantum mechanics. But the question remained: do they switch from one form to another, or are they somehow both? Now, for the first time, researchers have found a way to detect both particle and wave-like behavior at the same time.

The device relies on a process called quantum nonlocality; pretty much like every quantum phenomena, this too is counter intuitive and apparently absurd. Basically, quantum nonlocality states that a subatomic particle can exist in two places at the same time.

“The measurement apparatus detected strong nonlocality, which certified that the photon behaved simultaneously as a wave and a particle in our experiment,” physicist Alberto Peruzzo of England’s University of Bristol said in a statement. “This represents a strong refutation of models in which the photon is either a wave or a particle.”

However, the study was met with a healthy amount of criticism. MIT physicist Seth Lloyd, who was not involved in the project, called the experiment “audacious” in a related essay in Science.

“[..]if one has access to quantum memory in which to store the entanglement, the decision could be put off until tomorrow (or for as long as the memory works reliably). So why decide now? Just let those quanta slide!”

Quantum studies… they’re just weird, aren’t they?

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.