homehome Home chatchat Notifications


Physicists discover rare hypernucleus, a component of strange matter

It looks like not all is going bad for Italian researchers, after the trial of the seismologists: physicists from Italy have discovered the first evidence of a nucleus that doesn’t exist in nature and survives only for 10-10 seconds when created in a laboratory. Strange matter Hypernuclei contain all sorts of protons and neutrons, but […]

Mihai Andrei
February 20, 2012 @ 12:50 pm

share Share

It looks like not all is going bad for Italian researchers, after the trial of the seismologists: physicists from Italy have discovered the first evidence of a nucleus that doesn’t exist in nature and survives only for 10-10 seconds when created in a laboratory.

Strange matter

Hypernuclei contain all sorts of protons and neutrons, but unlike regular nuclei, they also contain at least a hyperon, a particle that consists of three quarks, including at least one strange quark; hypernuclei are considered to be the core of strange matter that may exist in distant parts of the universe and could prove valuable to researchers in understanding this phenomena. Whoa! Wait a minute, strange matter?

Let’s start from the beginning. You’ve probably learned in school that the world we see around us is built from ‘atoms’ – the building blocks of the Universe – which themselves consist of protons, neutrons and electrons. But scientists love to dig more and ask more questions, so they found other fundamental particles which build these particles. Among these smallest particles (that we know of at the moment, at least) are quarks, which go together and build neutrons and protons. Strange quarks are just a type of quarks, named so because, well, scientists have a sense of humor. Which gets us to our point: strange matter is a type of quark matter, usually thought of as a “liquid” of up, down, and strange quarks.

Hydrogen six Lambda

The particular hypernucleus analyzed here was called “hydrogen six Lambda” (6ΛH), and it was first predicted to exist in 1963. Now, researchers from the FINUDA experiment at the Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati (INFN-LNF) in Frascati, Italy have reported the first ever ‘sighting’ of such a phenomena, in a study published in the recent issue of Physical Review Letters.

As the name suggest, the atom is a species of Hydrogen which consists of six particles: four neutrons, one proton, and one Lambda (Λ) hyperon. Since the Hydrogen atom has only one proton and no neutrons, other species which do have neutrons are called ‘heavy hydrogen’, like deuterium (one neutron) and tritium (two neutrons). Since 6ΛH has four neutrons plus a L hyperon, physicists refer to it as “heavy hyperhydrogen.” The hyperon is practically a composite particle which contains one strange quark.

Without the L hyperon, it would practically be impossible to observe the Hydrogen atom with four neutrons, because it increases its lifetime from 10-22 seconds to 10-10 seconds.

The FINUDA experiment

The findings could shed light on strange matter, which many researchers believe to exist at the core of ultra-dense neutron stars. They can also serve as good tools to measure the current atomic model.

“The fact that a hypernucleus has a strange quark does give it interesting characteristics compared to normal nuclei, since it allows the component L particle to act as a probe that can go very deep into the nucleus to test the description that the single particle shell model gives of nuclear matter,” Botta said. “In this respect, the study of hypernuclear physics allows us to get information not directly accessible otherwise.”

Via Physorg

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.