homehome Home chatchat Notifications


Part of Earth's mantle is shown to be conductive under high pressures and temperatures

Ever since researchers started studying the Earth’s spin, they noticed that the spin isn’t perfect. Many believe this is a result of the different elements in the Earth’s core, mantle and crust, which have different densities and generate different friction. Most researchers studying this wobble agreed that the mantle would have to respond to the […]

Mihai Andrei
January 20, 2012 @ 2:49 pm

share Share

Ever since researchers started studying the Earth’s spin, they noticed that the spin isn’t perfect. Many believe this is a result of the different elements in the Earth’s core, mantle and crust, which have different densities and generate different friction.

Most researchers studying this wobble agreed that the mantle would have to respond to the magnetic tug of the core – but the problem here is that the mantle is made out of rocks, and not only metals, like the core, and therefore shouldn’t be conductive; hence, quite a predicament. However, new research done by Kenji Ohta and his colleagues at Osaka University in Japan.

As they describe in their paper published in Physical Review Letters, it appears that a mineral called Wustite (FeO), believed to be a significant component of the Earth’s mantle, can be made to conduct electricity at high temperatures and pressures.

In order to test their theory, they raised the mineral up to 1600°C and applying 70 gigapascals of pressure, and they found it becomes just as conductive as an average metal. To find out what happens in even harsher conditions, they heated the mineral to 2200°C and doubled the pressure – finding the same results, suggesting that the same thing would happen even deeper in the mantle, closer to the core-mantle boundary.

In order to better understand why this particular mixture of Oxygen and iron becomes conductive at high pressures, the team did density and electrical conductivity tests and their results seem to suggest that this metallization is related to the spin crossover.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

How to Build the World’s Highest Mountain

The rocks of Mount Everest’s peak made an epic journey from seafloor to summit.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

What's Behind the 'Blood Rain' That Turned This Iranian Shoreline Crimson

The island's unique geology is breathtaking.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Megalodon Wasn’t a Fat Great White—It Was a Sleek Lean Killing Machine

Looks like the movies got it wrong; who would have guessed?