homehome Home chatchat Notifications


Developing a flying, jellyfish-like machine

It’s been previously shown that the jellyfish are the world’s most efficient swimmers, and researchers wanted to see if they could implement some of its features into a flying machine. New York University researchers have built a small vehicle whose flying motion resembles the movements of a jellyfish – possibly paving the way for small […]

Mihai Andrei
December 3, 2013 @ 6:11 am

share Share

It’s been previously shown that the jellyfish are the world’s most efficient swimmers, and researchers wanted to see if they could implement some of its features into a flying machine.

New York University researchers have built a small vehicle whose flying motion resembles the movements of a jellyfish – possibly paving the way for small aerial robots which could be used for surveillance, traffic monitoring, or even search-and-rescue, while spending a minimum amount of energy.

It’s not the first time scientists have tried to mimic what’s going on in nature and implement it in a flying machine – inspiration was drawn from fruit flies and moths, for example. However, the problem is that the flapping wing of a fly is inherently unstable, raising major structural issues. Now, Leif Ristroph of NYU believes he has found the solution.

The prototype he’s created is limited: it can’t steer (pretty much like a jellyfish), and it’s relies on an external energy source – but the proof of principle has been made. What he developed is called an ornithopter (something which Dune fans might find familiar) – a flapping-wing aircraft. Ornithopters offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. The robot he developed achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. It measures only 8 cm, and its wings are arranged in a flower-like pattern.

The main purpose of this type of research is to make these robots as small as possible, and as simple as possible – so they can sneak in through tight spaces, without being observed and/or without disturbing.

“And ours is one of the simplest, in that it just uses flapping wings.”, says Ristroph.

Scientific Reference:

  • Leif Ristroph, Stephen Childress, Hovering of a jellyfish-like flying machine, presented at the American Physical Society’s Division of Fluid Dynamics meeting, Pittsburgh, 2013

share Share

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

The US wants to know if researchers in other countries follow MAGA doctrine

Science and policy are never truly free from one another. But one country's policy doesn't typically cross borders.

A Week of Cold Plunges Could Help Your Cells Fight Aging and Disease

Cold exposure "trains" cells to be more efficient at cleaning themselves up.

England will start giving morning-after pill for free

Free contraception in the UK clashes starkly with the US under Trump's shadow.

Japan’s Cherry Blossoms Are Blooming Earlier Than Ever. Guess Why

Climate change is disrupting natural cycles.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

A Gene-Edited Pig Liver Was Hooked to a Human for 10 Days and It Actually Worked

Breakthrough transplant raises hopes for patients needing liver support or awaiting transplants.