homehome Home chatchat Notifications


Nickel-78: a 'doubly magic' isotope

Some atoms are more stable than others, and the same goes for their isotopes – elements that have the same number of protons in the nucleus, but different number of neutrons. For instance, some decay in a trillionth of a second, while others can live on for billions of years. Actually, using isotopes (thorium and […]

Tibi Puiu
September 5, 2014 @ 1:44 pm

share Share

Some atoms are more stable than others, and the same goes for their isotopes – elements that have the same number of protons in the nucleus, but different number of neutrons. For instance, some decay in a trillionth of a second, while others can live on for billions of years. Actually, using isotopes (thorium and uranium decay) scientists were able to refine the dating for our planet’s age. The Earth is 4.54 billion years old.

The most exceptional isotopes are those that contain a ‘magic number’, as defined by scientists.The seven most widely recognized magic numbers are 2, 8, 20, 28, 50, 82 and 126, corresponding to the total number of protons and neutrons needed to completely fill the nuclear shells. Nickel-78 is perhaps the oddest of isotopes, and has been giving physicists headaches for ages because it is a ‘doubly magic’ isotope.

The nickel-78 (78-Ni) isotope contains 28 protons and 50 neutrons, making it doubly magic according to this series, but isotopes that exhibit such an excess of neutrons over protons are predicted to have a different magic number, according to models. This has prompted some scientists to say Nickel-78 isn’t magic at all.

: Heat map showing the production of exotic isotopes at the RIKEN Radioactive Isotope Beam Factory (RIBF). This facility can produce nickel-78 (78Ni) in yields sufficient for highly precise decay measurements. Credit: The American Physical Society

: Heat map showing the production of exotic isotopes at the RIKEN Radioactive Isotope Beam Factory (RIBF). This facility can produce nickel-78 (78Ni) in yields sufficient for highly precise decay measurements. Credit: The American Physical Society

Helping put an end to the debate are Shunji Nishimura and colleagues from the RIKEN Nishina Center for Accelerator-Based Science who have performed extensive experiments on Nickel-78.

“Many experiments have been carried out to identify systematic trends in nuclear properties near 78Ni,” says Nishimura. “Yet there has been no clear evidence on whether 78Ni is a double-magic nuclei due to the extremely low production yield of this isotope.”

The team used RIKEN’s Radioactive Isotope Beam Factory, which is capable of generating high yields of exotic and rare isotopes like 78Ni, as show in the figure above. Using this facility, in combination with the newly developed WAS3ABi detector, the research team was able to perform measurements of 78Ni decay with unprecedented precision. The experiments confirmed the doubly magic status of 78Ni, providing valuable insights into the behavior of exotic nuclei with large neutron excess. Such neutron-rich nuclei play an important role in the production of elements heavier than the most stable element iron, such as gold and uranium.

“We hope to solve one of the biggest mysteries of this century—where and how were the  created in the Universe?” explains Nishimura.

Findings were detailed in a paper published in the journal Physical Review Letters.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.