ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Nickel-78: a ‘doubly magic’ isotope

Tibi PuiubyTibi Puiu
September 5, 2014
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

What is the Electron Cloud Model: this is how electrons inside an atom really behave
Single-atom magnets used to create data storage one million times more dense than regular hard disks
Researchers capture sound from atoms, opening new doors to quantum research
Researchers create gigantic atom filled with 100 other atoms

Some atoms are more stable than others, and the same goes for their isotopes – elements that have the same number of protons in the nucleus, but different number of neutrons. For instance, some decay in a trillionth of a second, while others can live on for billions of years. Actually, using isotopes (thorium and uranium decay) scientists were able to refine the dating for our planet’s age. The Earth is 4.54 billion years old.

The most exceptional isotopes are those that contain a ‘magic number’, as defined by scientists.The seven most widely recognized magic numbers are 2, 8, 20, 28, 50, 82 and 126, corresponding to the total number of protons and neutrons needed to completely fill the nuclear shells. Nickel-78 is perhaps the oddest of isotopes, and has been giving physicists headaches for ages because it is a ‘doubly magic’ isotope.

The nickel-78 (78-Ni) isotope contains 28 protons and 50 neutrons, making it doubly magic according to this series, but isotopes that exhibit such an excess of neutrons over protons are predicted to have a different magic number, according to models. This has prompted some scientists to say Nickel-78 isn’t magic at all.

: Heat map showing the production of exotic isotopes at the RIKEN Radioactive Isotope Beam Factory (RIBF). This facility can produce nickel-78 (78Ni) in yields sufficient for highly precise decay measurements. Credit: The American Physical Society
: Heat map showing the production of exotic isotopes at the RIKEN Radioactive Isotope Beam Factory (RIBF). This facility can produce nickel-78 (78Ni) in yields sufficient for highly precise decay measurements. Credit: The American Physical Society

Helping put an end to the debate are Shunji Nishimura and colleagues from the RIKEN Nishina Center for Accelerator-Based Science who have performed extensive experiments on Nickel-78.

“Many experiments have been carried out to identify systematic trends in nuclear properties near 78Ni,” says Nishimura. “Yet there has been no clear evidence on whether 78Ni is a double-magic nuclei due to the extremely low production yield of this isotope.”

The team used RIKEN’s Radioactive Isotope Beam Factory, which is capable of generating high yields of exotic and rare isotopes like 78Ni, as show in the figure above. Using this facility, in combination with the newly developed WAS3ABi detector, the research team was able to perform measurements of 78Ni decay with unprecedented precision. The experiments confirmed the doubly magic status of 78Ni, providing valuable insights into the behavior of exotic nuclei with large neutron excess. Such neutron-rich nuclei play an important role in the production of elements heavier than the most stable element iron, such as gold and uranium.

“We hope to solve one of the biggest mysteries of this century—where and how were the heavy elements created in the Universe?” explains Nishimura.

Findings were detailed in a paper published in the journal Physical Review Letters.

Tags: atomdecayisotope

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Physics

Scientists Capture the X-ray Fingerprint of a Single Atom for the First Time — And This Could Change Everything

byTibi Puiu
7 months ago
Anthropology

Ancient Syrians’ nutrition looked a lot like the modern Mediterranean diet

byMihai Andrei
1 year ago
News

Chemists use soccer-ball-shaped molecules to form the first one-dimensional gas

byTibi Puiu
1 year ago
Atomium ball.
Periodic Table

What are isotopes: everything you need to know

byAlexandru Micu
2 years ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.