homehome Home chatchat Notifications


Watching Nanoscale Fluids Flow

Nanofluids, fluids containing nanometer-sized particles, show immense potential for future engineering. Even water flowing through nanotubes flows much faster than traditional mechanics says it should be possible. Now, researchers have found a way to directly image nanofluids. Researchers at Caltech have applied a new imaging technique called four-dimensional (4D) electron microscopy to the nanofluid dynamics problem. The technique […]

Henry Conrad
June 27, 2014 @ 11:21 am

share Share

Nanoscale nanofluids flowing.

Nanofluids, fluids containing nanometer-sized particles, show immense potential for future engineering. Even water flowing through nanotubes flows much faster than traditional mechanics says it should be possible. Now, researchers have found a way to directly image nanofluids.

Researchers at Caltech have applied a new imaging technique called four-dimensional (4D) electron microscopy to the nanofluid dynamics problem. The technique was invented at Caltech, and basically involves a stream of ultra-fast-moving electrons bombarding a sample in a carefully timed manner. Each electron scatters off a sample, providing a still image that lasts about a millionth of a billionth of a second. They are able to make millions and millions of these scatters, and stitch together the images – creating the result you see below.

Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics, and Ulrich Lorenz, a postdoctoral scholar in chemistry, the authors of the paper, used single laser pulses to melt the lead cores of individual zinc oxide nanotubes. Then, they observed how the hot pressurized liquid moved within the tubes.

“These observations are particularly significant because visualizing the behavior of fluids at the nanoscale is essential to our understanding of how materials and biological channels effectively transport liquids,” says Zewail. In 1999, Zewail won the Nobel Prize for his development of femtosecond chemistry.

Scientific Reference: Lorenz, Ulrich J. and Zewail, Ahmed H. (2014) Observing liquid flow in nanotubes by 4D electron microscopy. Science, 344 (6191). pp. 1496-1500. ISSN 0036-8075.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.