homehome Home chatchat Notifications


Milky Way Has Mysterious Lopsided Cloud Of Antimatter: Clue To Origin Of Antimatter

Antimatter is a fascinating story; basically nobody knows for sure what it could do and scientists have been trying to understand it for years. The artificial production of atoms of antimatter (specifically antihydrogen) first became a reality in the early 1990s. For example an atom of antihydrogen is composed of a negatively-charged antiproton being orbited […]

Mihai Andrei
January 14, 2008 @ 7:31 am

share Share

dark matter
Antimatter is a fascinating story; basically nobody knows for sure what it could do and scientists have been trying to understand it for years. The artificial production of atoms of antimatter (specifically antihydrogen) first became a reality in the early 1990s. For example an atom of antihydrogen is composed of a negatively-charged antiproton being orbited by a positively-charged positron. But still the clue that our old Milky Way galaxy gave us is relevant and important.

The thing is that the proton traveling at relativistic speeds and passing close to the nucleus of an atom has the potential to force the creation of an electron-positron pair. The shape of the mysterious cloud of antimatter in the central regions of the Milky Way has been revealed by ESA’s orbiting gamma-ray observatory Integral.

These observations almost eliminated the idea that the chances that the antimatter is coming from the annihilation or decay of astronomical dark matter. Georg Weidenspointner at the Max Planck Institute for Extraterrestrial Physics and an international team of astronomers made the discovery using four-years-worth of data from Integral.

“Simple estimates suggest that about half and possibly all of the antimatter is coming from the X-ray binaries,” says Weidenspointner. The other half could be coming from a similar process around the galaxy’s central black hole and the various exploding stars there. He points out that the lopsided distribution of hard LMXBs is unexpected, as stars are distributed more or less evenly around the galaxy. More investigations are needed to determine whether the observed distribution is real.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.