homehome Home chatchat Notifications


Meet the magnetic superatoms

Virginia Commonwealth University managed to discover what they have called a ‘magnetic superatom‘, a stable cluster of atoms that can ‘impersonate’ various elements from the periodic table, that could be put to use in numerous fields, especially for biomedical purposes and to create molecular devices for the next generation of computer memory.A team from the […]

Mihai Andrei
June 17, 2009 @ 8:43 am

share Share

dada Virginia Commonwealth University managed to discover what they have called a ‘magnetic superatom‘, a stable cluster of atoms that can ‘impersonate’ various elements from the periodic table, that could be put to use in numerous fields, especially for biomedical purposes and to create molecular devices for the next generation of computer memory.A team from the

This cluster consists of one atom of vanadium and eight cesium. Together, they act like a tiny magnet that mimics a single manganese atom in magnetic strength but allows electrons with certain spin orientations to flow through the surrounding shell atoms.

The team was led by Shiv N. Khanna, Ph.D., professor in the VCU Department of Physics, together with VCU postdoctoral associates J. Ulises Reveles, A.C. Reber, and graduate student P. Clayborne, and collaborators at the Naval Research Laboratory in D.C., and the Harish-Chandra Research Institute in Allahabad, India; they teamed up together to go against what can only be called a titanic quest, namely examining the magnetic and electronic properties of the clusters.

They found out that the eight cesium atoms provide extra stability due to a filled electronic state. Also, when one atom combines with others, it tends to lose or gain valence until it reaches stable configuration. As Khanna points out:

“An important objective of the discovery was to find what combination of atoms will lead to a species that is stable as we put multiple units together. The combination of magnetic and conducting attributes was also desirable. Cesium is a good conductor of electricity and hence the superatom combines the benefit of magnetic character along with ease of conduction through its outer skin,” Khanna said. A combination such as the one we have created here can lead to significant developments in the area of “molecular electronics,” a field where researchers study electric currents through small molecules. These molecular devices are expected to help make non-volatile data storage, denser integrated devices, higher data processing and other benefits,” he said.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

The flower from King Tut's tomb is flooding the internet but scientists say it's fake (thanks, reddit!)

The Egyptian blue lotus sold online isn't what you think. The real story behind this mythical plant is much more interesting though.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Microlightning in Water Droplets Could Have Sparked Life on Earth

New research suggests tiny electrical charges in water droplets could have fueled the chemical reactions that led to life.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.