ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Meet the magnetic superatoms

Mihai AndreibyMihai Andrei
June 17, 2009 - Updated on June 11, 2023
in Chemistry, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

5th grader discovers new molecule, gets co-author status
First Universal Two-Qubit quantum processor created
Tightest molecular knot could lead to better, stronger materials
What are the strong chemical bonds?

dada Virginia Commonwealth University managed to discover what they have called a ‘magnetic superatom‘, a stable cluster of atoms that can ‘impersonate’ various elements from the periodic table, that could be put to use in numerous fields, especially for biomedical purposes and to create molecular devices for the next generation of computer memory.A team from the

This cluster consists of one atom of vanadium and eight cesium. Together, they act like a tiny magnet that mimics a single manganese atom in magnetic strength but allows electrons with certain spin orientations to flow through the surrounding shell atoms.

The team was led by Shiv N. Khanna, Ph.D., professor in the VCU Department of Physics, together with VCU postdoctoral associates J. Ulises Reveles, A.C. Reber, and graduate student P. Clayborne, and collaborators at the Naval Research Laboratory in D.C., and the Harish-Chandra Research Institute in Allahabad, India; they teamed up together to go against what can only be called a titanic quest, namely examining the magnetic and electronic properties of the clusters.

They found out that the eight cesium atoms provide extra stability due to a filled electronic state. Also, when one atom combines with others, it tends to lose or gain valence until it reaches stable configuration. As Khanna points out:

“An important objective of the discovery was to find what combination of atoms will lead to a species that is stable as we put multiple units together. The combination of magnetic and conducting attributes was also desirable. Cesium is a good conductor of electricity and hence the superatom combines the benefit of magnetic character along with ease of conduction through its outer skin,” Khanna said. A combination such as the one we have created here can lead to significant developments in the area of “molecular electronics,” a field where researchers study electric currents through small molecules. These molecular devices are expected to help make non-volatile data storage, denser integrated devices, higher data processing and other benefits,” he said.

Tags: atomscesiummoleculevanadium

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space

byTibi Puiu
2 months ago
News

JWST detects earliest complex molecules in the Universe in cosmic smoke

byJordan Strickler
2 years ago
fusion vs fission
Matter and Energy

What’s the difference between nuclear fission and fusion

byTibi Puiu
3 years ago
News

Scientists image atoms with record resolution close to absolute physical limits

byTibi Puiu
4 years ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.