homehome Home chatchat Notifications


Mass of the electron re-weighed for a precision of parts per trillion

Typically in physics, your calculations and such are as precise as your use of constants. Meaning, if you have a skewed value for your constant, this will obviously affect all the computations where this constant is used. Today, all the important physical constants are rather precisely known, whether we’re talking about the speed of light […]

Tibi Puiu
February 25, 2014 @ 5:54 pm

share Share

Typically in physics, your calculations and such are as precise as your use of constants. Meaning, if you have a skewed value for your constant, this will obviously affect all the computations where this constant is used. Today, all the important physical constants are rather precisely known, whether we’re talking about the speed of light or tau mass. For most real-life applications, you don’t really need to work with figures that are correct down to the 19th digit. Some work, however, requires the most precise measurement possible.

Recently, German scientists published a paper in Nature in which the detail the methodology they used to perform the most precise measurement of an electron’s mass to date, down to parts per trillion. To this end, the researchers used a complex method that relies on strengthening the measurement for other constants involved in the electron mass measurement itself.

A Penning Trap - not the actual one used in the research. Photo: mpi-hd.mpg.de

A Penning Trap – not the actual one used in the research. Photo: mpi-hd.mpg.de

 

Since scientists  first began to tinker with the concepts of molecules, atoms, electrons, neutrons and so forth, there has always been a need to precisely measure particle mass. For most applications, you don’t need an exhaustive measurement, but come the age of high energy particle physics, this need has never been more important and considering an electron weighs so very little, it’s a really tough job.

The team led by Sven Sturm of the Max Planck Institute for Nuclear Physics in Heidelberg first bound an electorn to a reference ion – a hydrogen-like carbon nucleus, stripped down to a single electron. This nucleus has a known mass. Then, using Penning trap apparatus you put the ion-electron pair in motion around a circular path, coerced by both magnetic and electric field. The scientists first measured the frequency of the ion-electron system, then just that of the electron. Following a complicated  QED calculation, which took into account this ratio, the mass of the ion, the ration between electron and ion charge, a refined value for the g-factor (more on this here), the team ended up with the most precise value for an electron’s mass so far.

The electron has 0.000548579909067 of an atomic mass unit, the measurement unit for particles, according to the calculation, which factors in variables for statistical and experimental uncertainties. This marks a 13-fold improvement in measurement accuracy.

 

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.