homehome Home chatchat Notifications


Crucial magnetic superconductor breakthrough opens new grounds in electronics

Researchers have reached what can only be described as a crucial milestone that opens the way for a new class of materials with amazing electronic properties. Superconductivity is a relatively recently discovered feat, in which conducting materials oppose exactly zero resistance when electric current passes through them, below a certain temperature. Like ferromagnetism and atomic […]

Mihai Andrei
September 7, 2011 @ 5:29 am

share Share

Researchers have reached what can only be described as a crucial milestone that opens the way for a new class of materials with amazing electronic properties.

Superconductivity is a relatively recently discovered feat, in which conducting materials oppose exactly zero resistance when electric current passes through them, below a certain temperature. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon.

In this research, physicists sandwiched two nonmagnetic insulators together and discovered a shocking result: the layer in which the two materials meet has both magnetic and superconucting portions – two properties that normally just don’t go together.

Scientists have long hoped to find in away to engineer magnetism in this class of materials, calle complex oxides, as a first step in developing a potential new form of computing memory for storage and processing. The team Stanford Institute for Materials and Energy Science (SIMES), a joint institute of the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University said that this opens “exciting possibilities for engineering new materials and studying the interplay of these normally incompatible states“.

The next step in this research is finding out if superconductivity and magnetism can in fact coexist, or if this is some sort of new exotic type of superconductivity that interacts actively with magnetism.

“Our future measurements will indicate whether they’re fighting one another or helping one another,” Moler said.

Either way, one thing’s for sure – we are on the brink of a major development in superconductivity.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.