homehome Home chatchat Notifications


Researchers create a new material from 1 billion tiny magnets which mimics ice, water and steam

Scientists working at the Paul Scherrer Institute (PSI) have created a very specific type of material from over 1 billion magnets placed in a specific configuration. Astonishingly, its magnetic properties now change with temperature, just like water can be liquid, solid and gaseous based on temperature.

Mihai Andrei
September 23, 2015 @ 11:16 am

share Share

Scientists working at the Paul Scherrer Institute (PSI) have created a very specific type of material from over 1 billion magnets placed in a specific configuration. Astonishingly, its magnetic properties now change with temperature, just like water can be liquid, solid and gaseous based on temperature.

Image credits: Heyderman et al.

This material was constructed to confirm or infirm some previous theories; some researchers suspected that the material may behave this way, but until now, it was just a theory. They used over 1 billion nanomagnets, and placed them in very precise positions in a hexagonal lattice. The magnets are only 63 nanometers long, and are shaped roughly like a rice grain; the total area covered by them was about 5 millimeters. The advantage here is that while individual atoms can’t really be placed with such accuracy, magnets can.

Then, they started testing on the magnetic material; they found that while heated, the magnets maintained a more or less random direction. But as they cooled off, they began to lock in particular positions. Specifically, they noted three phase transitions – just like with water.

Laura Heyderman from PSI said:

“We were surprised and excited,” explains Heyderman. “Only complex systems are able to display phase transitions.”

This has major implications for engineering future materials – it enables the creation of new states of matter, or even better – developing a specific state of matter that changes its properties based on specific needs.

“The beauty of it all: tailored phase transitions could enable metamaterials to be adapted specifically for different needs in future,” explains Heyderman.

Specific applications could be in information transfer or sensors that measure changes in magnetic properties.

Journal reference: L. Anghinolfi, H. Luetkens, J. Perron, M. G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P. M. Derlet, S. L. Lee & L. J. Heyderman. Thermodynamic phase transitions in a frustrated magnetic metamaterial. doi:10.1038/ncomms9278

share Share

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.