homehome Home chatchat Notifications


Physicists create negative temperature state - thermodynamic laws still stand

Well, the year really kicked off in style. This research is really next level physics, and in order to understand it (even slightly), we’re going to delve into some serious physics. Dancing around absolute zero Over the years, physicists have made significant progress in cooling objects closer to absolute zero (0 Kelvin, the temperature at […]

Mihai Andrei
January 7, 2013 @ 5:49 am

share Share

Well, the year really kicked off in style. This research is really next level physics, and in order to understand it (even slightly), we’re going to delve into some serious physics.

Dancing around absolute zero

quantum gas 0 Over the years, physicists have made significant progress in cooling objects closer to absolute zero (0 Kelvin, the temperature at which all molecular motion stops because there is no energy in the classical sense. Absolute zero is the absolute zero, and you can’t reach it, so ultimately, you are limited. So how can you go below 0 Kelvin?

First of all, you have to understand that thermodynamics doesn’t define temperature as a physical parameter, but rather as a statistic of the energy distribution present so basically, you can create crazy temperatures with unusual distributions. Therefore, it is theoretically possible to have a negative value – just note that for this particular case, as weird as it would seem, negative doesn’t mean lower than zero. So how did they do it?

Well, you first want to bring the gas to almost zero temperature;  two concepts appear here: laser trapping and evaporative cooling. Basically, you have a flow of atoms running around in one direction. You point a laser exactly at them, in the opposite direction. Just like you would try running against a stream or a very powerful wind, the atoms are slowed down, stopped, or even pushed backwards. Then you put another laser in their original flow direction to even it out, and they are practically stuck. Do the same thing from up and down lasers, and you’ve trapped the atoms which are now stuck in your trap. That’s when evaporative cooling kicks in. Now remember, the temperature of the atoms is dependant strictly on their energy, so if we could somehow remove the high-state energy atoms, then we would be left only with the lower energy ones – the temperature would drop, and so would the temperature. To do this, researchers loosen the trap just a tiny bit – that way, the higher energy atoms can escape. Rinse and repeat, loosening it more and more, until you are stuck with only the low energy atoms and the low temperature. The thing is, even an extremely low amount of energy is some energy, so you can’t really do it until you reach 0 K(elvin). This is what researchers typically use when they want to drop temperatures close to 0, but in order to go negative, you have to use something different.

The physics

In a negative temperature system, temperatures get lower as more atoms pile up close to its maximum energy.

In a negative temperature system, temperatures get lower as more atoms pile up close to its maximum energy.

Again, many sites and magazines, even high quality ones are dancing around the issue here, so I’d like to underline it again: having negative temperatures on the Kelvin scale and going below absolute zero are not the same thing. In fact, they are fundamentally different.

Ulrich Schneider, a physicist at the Ludwig Maximilian University in Munich, Germany reached such sub-zero temperatures; after bringing them to extremely low temperatures, they used an ultracold quantum gas made up of potassium atoms, using lasers and magnetic fields to keep the individual atoms in a lattice arrangement. At positive temperatures, the atoms repel, making the configuration stable. The team then quickly adjusted the magnetic fields, causing the atoms to attract rather than repel each other – causing a major shift in the atoms.

“This suddenly shifts the atoms from their most stable, lowest-energy state to the highest possible energy state, before they can react,” says Schneider. “It’s like walking through a valley, then instantly finding yourself on the mountain peak.”

Wait, what? Here’s a relatively layman explanatiopn that I hope will clarify things. For a typical material with positive temperature, adding energy in the form of heat makes it more disordered, incerasing its entropy. Entropy can be loosely defined as a measure of the chaos in the system, so imagine this system. Say you have a system with equally equivalent atoms, all of which are in a low energy state (pretty much all systems have most atoms in low energy states). The system is perfectly ordered. Now, say you give the system just enough energy to lift one atom to a superior energy state; the entropy has increased – you have no way of telling which atom will rise, and the system suddenly becomes more chaotic, disordered. But say you somehow manage to create a system where all atoms but one are in a high energy state; when you add the same amount of energy, your system will become more ordered, as you know exactly which atom will rise, and you’ll again have a perfectly ordered system. That’s the thing here; if you give energy to a system it will become more and more disordered, up until a point where giving it energy will actually make it more ordered.

The team’s result marks the transition from just above absolute zero to a few billionths of a Kelvin below absolute zero.

Peculiarities

The whole idea is counter intuitive and requiers a firm understanding of thermodynamic principles to grasp, so it’s a little quirky to talk about what’s peculiar here, but what is just down right strange is that sub zero gases mimic ‘dark energy‘ – the mysterious form of energy which pushes and expands our Universe faster and faster, against the Universe’s own gravity.

“It’s interesting that this weird feature pops up in the Universe and also in the lab,” Schneider says. “This may be something that cosmologists should look at more closely.”

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.