homehome Home chatchat Notifications


LHC reaches highest energy yet

It’s been pretty quiet lately at the LHC, despite the fact that things seemed to be getting pretty hot, as the elusive Higgs boson appeared to be cornered. However, CERN cracked up the volume, announcing they achieved a record collision energy of 8 TeV. LHC recap The Large Hadron Collider is the world’s largest and […]

Mihai Andrei
April 6, 2012 @ 7:01 am

share Share

It’s been pretty quiet lately at the LHC, despite the fact that things seemed to be getting pretty hot, as the elusive Higgs boson appeared to be cornered. However, CERN cracked up the volume, announcing they achieved a record collision energy of 8 TeV.

LHC recap

The Large Hadron Collider is the world’s largest and highest energy particle accelerator, built by the European Organization for Nuclear Research (CERN). Through it, particle physicists hope to answer some of the most challenging questions in science, finding the fundamental laws which govern our world – particularly the Higgs boson, the particle which lies at the base of the Standard Model. The Standard Model is a theory concerning the electromagnetic, weak, and strong nuclear interactions, which practically seeks to explain how particles interact with each other at the most basic levels. Finding the Higgs boson will prove it, showing that it doesn’t exist will disprove it – either way, it will be a tremendous leap for particle physics and science overall.

In order to do this, they accelerate particles more and more until they reach dazzling energies of up to a few TeV (Terra-electron Volts). By definition, an electron Volt is the amount of energy gained by the charge of a single electron moved across an electric potential difference of one volt – and a few TeVs is a lot.

Highest energy yet

“The experience of two good years of running at 3.5 TeV per beam [7 per collision] gave us the confidence to increase the energy for this year without any significant risk to the machine,says CERN’s director for accelerators and technology, Steve Myers. “Now it’s over to the experiments to make the best of the increased discovery potential we’re delivering them!”

While it may not be a huge growth, it will almost certainly be enough to take the LHC up to a level where certain particles would be produced much more copiously, including those predicted by supersymmetry. This is extremely exciting news, especially after last year, CERN produced what can only be described as ‘tantalizing hints’ of the Higgs boson, which would show why everything in the universe has mass.

The new, higher levels of energy, will increase the chances of producing such particles, if they exist, but it will also increase the amount of background noise, so the researchers need to run tests at these energies until the rest of the year to get a clear enough picture of what is really happening. But that being said, the LHC is truly beginning to unlock its full potential, and this year promises to be just fantastic for physics.

“The increase in energy is all about maximising the discovery potential of the LHC,” says CERN research director Sergio Bertolucci. “And in that respect, 2012 looks set to be a vintage year for particle physics.”

Their ultimate goal is to get to 7 TeV per beam, which will probably happen some time at the end of 2014.

Via TG Daily

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.