homehome Home chatchat Notifications


New exotic particle behaviour found at CERN

The Large Hadron Collider at CERN has started doing some serious business. This time, an extremely rare particle containing equal parts of matter and antimatter popped up during experiments at the world’s largest and hottest particle accelerator.   The particle, named a B meson is made out of one quark (the building blocks of protons […]

Mihai Andrei
March 29, 2011 @ 5:03 am

share Share

The Large Hadron Collider at CERN has started doing some serious business. This time, an extremely rare particle containing equal parts of matter and antimatter popped up during experiments at the world’s largest and hottest particle accelerator.

CREDIT: CERN/Maximilien Brice, Rachel Barbier

 

The particle, named a B meson is made out of one quark (the building blocks of protons and neutrons) and one antiquark (the building blocks of antiprotons and antineutrons). What are antiprotons and antineutrons ? Well, they are just like their positive brothers… only they are negative. They have the exact same properties, only opposite in signs. For example, an antiproton has the exact same charge a proton has, but it is negative instead of positive.

All normal particles are thought to have antimatter analogues, and when matter and antimatter meets, they destroy each other. Scientists believe that at first, matter and antimatter were created equally, but if this is the case, then where is all the antimatter ? The most plausible solution would be that a huge quantity of matter and antimatter annihilated each other, and the remaining matter is what we see in our universe today.

The particle in case, the B meson, is thought to have been common right after the Big Bang, but it is believed that at the moment, it doesn’t occure naturally in nature. They aren’t stable, and after created, quickly start decaying; this process, a B meson decay has long been theoretized, but never seen before.

“Our experiment is set up to measure the decays of B mesons,” sayd Sheldon Stone, physicist at Syracuse University. “We discovered some new and interesting decay modes of B mesons, which hadn’t ever been seen before.”

Studying this type of behaviour can provide the answer to the ultimate question of antimatter – why do we see all this matter around us today, and no antimatter. Meanwhile, the search for the elusive Higgs boson is continued.

“When the universe was created in the Big Bang about 14 billion years ago, the number of particles and antiparticles was the same,” Stone said. “One of the major questions that we really don’t know the answer to is why are there particles around now and not antiparticles. By studying the differences we can learn maybe what the physics is behind that difference.

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.