homehome Home chatchat Notifications


New exotic particle behaviour found at CERN

The Large Hadron Collider at CERN has started doing some serious business. This time, an extremely rare particle containing equal parts of matter and antimatter popped up during experiments at the world’s largest and hottest particle accelerator.   The particle, named a B meson is made out of one quark (the building blocks of protons […]

Mihai Andrei
March 29, 2011 @ 5:03 am

share Share

The Large Hadron Collider at CERN has started doing some serious business. This time, an extremely rare particle containing equal parts of matter and antimatter popped up during experiments at the world’s largest and hottest particle accelerator.

CREDIT: CERN/Maximilien Brice, Rachel Barbier

 

The particle, named a B meson is made out of one quark (the building blocks of protons and neutrons) and one antiquark (the building blocks of antiprotons and antineutrons). What are antiprotons and antineutrons ? Well, they are just like their positive brothers… only they are negative. They have the exact same properties, only opposite in signs. For example, an antiproton has the exact same charge a proton has, but it is negative instead of positive.

All normal particles are thought to have antimatter analogues, and when matter and antimatter meets, they destroy each other. Scientists believe that at first, matter and antimatter were created equally, but if this is the case, then where is all the antimatter ? The most plausible solution would be that a huge quantity of matter and antimatter annihilated each other, and the remaining matter is what we see in our universe today.

The particle in case, the B meson, is thought to have been common right after the Big Bang, but it is believed that at the moment, it doesn’t occure naturally in nature. They aren’t stable, and after created, quickly start decaying; this process, a B meson decay has long been theoretized, but never seen before.

“Our experiment is set up to measure the decays of B mesons,” sayd Sheldon Stone, physicist at Syracuse University. “We discovered some new and interesting decay modes of B mesons, which hadn’t ever been seen before.”

Studying this type of behaviour can provide the answer to the ultimate question of antimatter – why do we see all this matter around us today, and no antimatter. Meanwhile, the search for the elusive Higgs boson is continued.

“When the universe was created in the Big Bang about 14 billion years ago, the number of particles and antiparticles was the same,” Stone said. “One of the major questions that we really don’t know the answer to is why are there particles around now and not antiparticles. By studying the differences we can learn maybe what the physics is behind that difference.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.