homehome Home chatchat Notifications


At a few million atmospheric pressures, Hydrogen nears metal conductivity

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets. Under typical conditions, Hydrogen is a diatomic molecule […]

Mihai Andrei
June 5, 2013 @ 6:08 am

share Share

Hydrogen is the most common element in the Universe. It’s the first element in the periodic table, and it has but one proton and one electron. Understanding how it behaves at very large pressures is crucial to our understanding of matter and the nature of hydrogen-rich planets.

hydrogen

Under typical conditions, Hydrogen is a diatomic molecule (H2); but as pressure increases, these molecules start to change – these different forms are called phases, and hydrogen as three well known solid phases. But it has also been speculated that at very large pressures, it starts acting like a metal, conducting electricity. As a matter of fact, a few more bold physicists believe that it can even become a superconductor or a superfluid that never freezes–a completely new and exotic state of matter.

In this new paper, a team from Carnegie’s Geophysical Laboratory examined the structure, bonding and electronic properties of highly compressed hydrogen using a technique called infrared radiation.

The team found the new form to occur between 2.2 million atmospheres at about 25 degrees Celsius (80 Fahrenheit) to at least 3.4 million times atmospheric pressure and about -70 degrees Celsius (-100 Fahrenheit).

Their results showed that in these conditions, hydrogen acts like no other structure that we know of. It has two very different types molecules in its structure – one which interacts very weakly with its neighboring molecules (highly unusual for matter at such high pressures), and another which bonds with its neighbors, forming surprising planar sheets.

“This simple element–with only one electron and one proton–continues to surprise us with its richness and complexity when it is subjected to high pressures,” Russell Hemley, Director of the Geophysical Laboratory, said. “The results provide an important testing ground for fundamental theory.”

Via Carnegie

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

This New Catalyst Can Produce Ammonia from Air and Water at Room Temperature

Forget giant factories! A new portable device could allow farmers to produce ammonia right in the field, reducing costs, and emissions.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

GeoPicture of the week: Biggest crystals in the world

Known as Cueva de los Cristales (Cave of Crystals), this hidden chamber in Mexico holds some of the largest natural crystals ever discovered. The translucent pillars, some as long as telephone poles and as wide as tree trunks, make for an eerie underground landscape, seemingly crafted by giants. But there’s no magic involved, just some […]

Pee-back time: Anti-Pee Paint Splashes Back at Public Urination

When man piss in wind, wind piss back, a modern Confucius states. In this line, the city of Hamburg ingeniously sought to address its growing public urination problem in the city's busy party center by painting walls with hydrophobic paint. Next time an unsuspecting person wants to take a load off in Hamburg's St. Pauli neighborhood, he might be in for a surprise - it'll splash back at him.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?