homehome Home chatchat Notifications


Graphene used to reduce processor chip temperature by 25%

In the world of microelectronics, packing the most computing power you can squeeze in the smallest surface is the topmost priority. As powerful devices in term of computing become ever miniaturized, however, efficiently disposing of heat or keeping devices cool under a working temperature is one of the biggest challenges the industry is facing right […]

Tibi Puiu
July 5, 2013 @ 10:58 am

share Share

An electronic component where a graphene layer has been placed on the hotspots (credit: Chalmers University of Technology)

An electronic component where a graphene layer has been placed on the hotspots (credit: Chalmers University of Technology)

In the world of microelectronics, packing the most computing power you can squeeze in the smallest surface is the topmost priority. As powerful devices in term of computing become ever miniaturized, however, efficiently disposing of heat or keeping devices cool under a working temperature is one of the biggest challenges the industry is facing right now. Graphene, the wonder material we’ve praised on more than one occasion, but never really enough, seems to yet again provide a practical solution.

Researchers Chalmers University of Technology in Sweden showed that after a graphene layer was applied on chips, temperature in hotspots inside a processor were reduced by up to 25 percent.

“The normal working temperature in the hotspots we have cooled with a graphene layer has ranged from 55 to 115 degrees Celsius. We have been able to reduce this by up to 13 degrees, which not only improves energy efficiency, it also extends the working life of the electronics.”

Just to get an idea, in electronics a general rule of thumb says that if a devices runs under a temperature 10-degree Celsius hotter than its supposed to, its life cycle is halved. Ever wondered why some electronics malfunction more often than usual? Overheating is one of the dominant causes.

“This discovery opens the door to increased functionality and continues to push the boundaries when it comes to miniaturizing electronics,” said Chalmers Professor Johan Liu, who heads the international research project, in partnership with the Hong Kong University of Science and Technology, Shanghai University in China and Swedish company SHT Smart High Tech AB.

Greenhouse gas emissions could also be considerably reduced if electronics, even microelectronics actually, were better at keeping themselves cool. In a 2007 report, the Environmental Protection Agency estimated that  U.S. servers and data centers consumed about 61 billion kilowatt-hours (kWh), accounting for 1.5 percent of total U.S. electricity consumption.

A bit on graphene. Graphene is a single atomic layer of sp2 bonded carbon atoms arranged into a honeycomb lattice. Graphite, commonly found in pencil leads, is comprised of millions of graphene sheets stacked together by weak van de Waals forces. Being only one atom thick, graphene is almost invisible, absorbing only about 2.3% of light. It conducts electricity as well as copper, conducts heat better than most materials and is stiffer and stronger than diamond but at the same time is flexible. Actually, It’s the world’s strongest material, even when it has flaws, a graphene aerogel is also the lightest material known, it’s great for sensors, for headphones, it repairs itself, it can be magnetic, and boasts a swarm of other features and capabilities. It’s better to ask what graphene CAN’T do.

The research, that has been undertaken in partnership with the Hong Kong University of Science and Technology, Shanghai University in China and Swedish company SHT Smart High Tech AB, has been published in the scientific publication Carbon (scientific paper).

via KurzweilAI / source: Chalmer Uni

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

To Spin Silk Five Times Stronger Than Steel, Spiders Perform a Stretching Trick

Stretching is key to spider silk's remarkable properties.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]