homehome Home chatchat Notifications


Graphene used to reduce processor chip temperature by 25%

In the world of microelectronics, packing the most computing power you can squeeze in the smallest surface is the topmost priority. As powerful devices in term of computing become ever miniaturized, however, efficiently disposing of heat or keeping devices cool under a working temperature is one of the biggest challenges the industry is facing right […]

Tibi Puiu
July 5, 2013 @ 10:58 am

share Share

An electronic component where a graphene layer has been placed on the hotspots (credit: Chalmers University of Technology)

An electronic component where a graphene layer has been placed on the hotspots (credit: Chalmers University of Technology)

In the world of microelectronics, packing the most computing power you can squeeze in the smallest surface is the topmost priority. As powerful devices in term of computing become ever miniaturized, however, efficiently disposing of heat or keeping devices cool under a working temperature is one of the biggest challenges the industry is facing right now. Graphene, the wonder material we’ve praised on more than one occasion, but never really enough, seems to yet again provide a practical solution.

Researchers Chalmers University of Technology in Sweden showed that after a graphene layer was applied on chips, temperature in hotspots inside a processor were reduced by up to 25 percent.

“The normal working temperature in the hotspots we have cooled with a graphene layer has ranged from 55 to 115 degrees Celsius. We have been able to reduce this by up to 13 degrees, which not only improves energy efficiency, it also extends the working life of the electronics.”

Just to get an idea, in electronics a general rule of thumb says that if a devices runs under a temperature 10-degree Celsius hotter than its supposed to, its life cycle is halved. Ever wondered why some electronics malfunction more often than usual? Overheating is one of the dominant causes.

“This discovery opens the door to increased functionality and continues to push the boundaries when it comes to miniaturizing electronics,” said Chalmers Professor Johan Liu, who heads the international research project, in partnership with the Hong Kong University of Science and Technology, Shanghai University in China and Swedish company SHT Smart High Tech AB.

Greenhouse gas emissions could also be considerably reduced if electronics, even microelectronics actually, were better at keeping themselves cool. In a 2007 report, the Environmental Protection Agency estimated that  U.S. servers and data centers consumed about 61 billion kilowatt-hours (kWh), accounting for 1.5 percent of total U.S. electricity consumption.

A bit on graphene. Graphene is a single atomic layer of sp2 bonded carbon atoms arranged into a honeycomb lattice. Graphite, commonly found in pencil leads, is comprised of millions of graphene sheets stacked together by weak van de Waals forces. Being only one atom thick, graphene is almost invisible, absorbing only about 2.3% of light. It conducts electricity as well as copper, conducts heat better than most materials and is stiffer and stronger than diamond but at the same time is flexible. Actually, It’s the world’s strongest material, even when it has flaws, a graphene aerogel is also the lightest material known, it’s great for sensors, for headphones, it repairs itself, it can be magnetic, and boasts a swarm of other features and capabilities. It’s better to ask what graphene CAN’T do.

The research, that has been undertaken in partnership with the Hong Kong University of Science and Technology, Shanghai University in China and Swedish company SHT Smart High Tech AB, has been published in the scientific publication Carbon (scientific paper).

via KurzweilAI / source: Chalmer Uni

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

Pee-back time: Anti-Pee Paint Splashes Back at Public Urination

When man piss in wind, wind piss back, a modern Confucius states. In this line, the city of Hamburg ingeniously sought to address its growing public urination problem in the city's busy party center by painting walls with hydrophobic paint. Next time an unsuspecting person wants to take a load off in Hamburg's St. Pauli neighborhood, he might be in for a surprise - it'll splash back at him.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.