homehome Home chatchat Notifications


New spin makes graphene magnetic

I was telling you a while ago about the revolutionary material called graphene. Graphene is a one atom thick layer of carbon packed in a honeycomb lattice. Now, a team led by Professor Andre Geim, recipient of the Nobel Prize for graphene, showed that electric current (which is basically a flow of electrons) can magnetise […]

Mihai Andrei
April 16, 2011 @ 4:12 am

share Share

I was telling you a while ago about the revolutionary material called graphene. Graphene is a one atom thick layer of carbon packed in a honeycomb lattice. Now, a team led by Professor Andre Geim, recipient of the Nobel Prize for graphene, showed that electric current (which is basically a flow of electrons) can magnetise the material.

This could lead to an extremely fast development of spintronics, an emerging group of technologies that exploit the intrinsic spin of the electron, in addition to its fundamental electric charge that is exploited in microelectronics. The findings involve a great number of researchers from the US, Russia, Japan and the Netherlands.

It is believed that in future spintronics transistors and devices, coupling between the current and spin will be direct, without having to use magnetic materials to inject spins, which is the way things are done at the moment.

Professor Geim said:

“The holy grail of spintronics is the conversion of electricity into magnetism or vice versa. We offer a new mechanism, thanks to unique properties of graphene. I imagine that many venues of spintronics can benefit from this finding.”

Antonio Castro Neto, a physics professor from Boston who wrote a news article for the Science magazine which accompanies the research paper commented: “Graphene is opening doors for many new technologies.

“Not surprisingly, the 2010 Nobel Physics prize was awarded to Andre Geim and Kostya Novoselov for their groundbreaking experiments in this material. Apparently not satisfied with what they have accomplished so far, Geim and his collaborators have now demonstrated another completely unexpected effect that involves quantum mechanics at ambient conditions. This discovery opens a new chapter to the short but rich history of graphene.”

share Share

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

The flower from King Tut's tomb is flooding the internet but scientists say it's fake (thanks, reddit!)

The Egyptian blue lotus sold online isn't what you think. The real story behind this mythical plant is much more interesting though.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Microlightning in Water Droplets Could Have Sparked Life on Earth

New research suggests tiny electrical charges in water droplets could have fueled the chemical reactions that led to life.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?