homehome Home chatchat Notifications


Scientists believe they've found a particle made entirely of strong nuclear force - a glueball

After decades of searching, researchers believe they have finally discovered a glueball - a proposed particle that consists solely of gluon particles.

Mihai Andrei
October 15, 2015 @ 6:48 am

share Share

After decades of searching, researchers believe they have finally discovered a glueball – a proposed particle that consists solely of gluon particles, without valence quarks, that is instrumental to the Standard Model of Physics, but hasn’t been observed until now.

A crash course in particle physics

Nucleons consist (left) of quarks (matter particles) and gluons (force particles). A glueball (right) is made up purely of gluons. Image via Physorg.

There are four forces governing the basic interactions of particles – these are called the fundamental forces: gravity, electromagnetic, weak nuclear and strong nuclear. All the interactions in the universe can be described by some combination of these forces. Now, in 1970, physicists tried to write down how these forces interact with each other at the subatomic level, and predicted all the particles that they believe make up the universe. The current formulation was finalized in the mid-1970s upon experimental confirmation and since then, further experiments have confirmed the validity of the Standard Model.

According to the model, protons and neutrons are made of minuscule elementary particles called quarks. These quarks are held together by even smaller particles, gluons. Gluons are massless particles somewhat similar to photons – just like photons are responsible for exerting the electromagnetic force, gluons are responsible for exerting the strong nuclear force. In a way, they are strong nuclear force.

“In particle physics, every force is mediated by a special kind of force particle, and the force particle of the strong nuclear force is the gluon,” explains one of the researchers, Anton Rebhan from the Vienna University of Technology.

Finding glueballs

But there is one major difference: while photons aren’t affected by the force they exert, gluons are. In other words, gluons can’t be held together by strong nuclear force, but they can do exert strong magnetic force on other particles; that’s just how the strange world of particle physics sometimes works.

However, while glueballs are massless on their own, their interactions with other glueballs does give them a mass, which means that scientists can theoretically detect them, albeit indirectly, through their disintegration process, but that’s extremely difficult because in particle accelerators, glueballs tend to mix with other particles (namely meson states).

However, Rebhan and his team published a report in Physical Review Letters which gives a lot of hope for detecting these particles.

“Our calculations show that it is indeed possible for glueballs to decay predominantly into strange quarks,” he says.

They will now analyze more data from the Large Hadron Collider at CERN (TOTEM and LHCb) in Switzerland and an accelerator experiment in Beijing (BESIII) to help confirm their find.

“These results will be crucial for our theory,” says Rebhan. “For these multi-particle processes, our theory predicts decay rates which are quite different from the predictions of other, simpler models. If the measurements agree with our calculations, this will be a remarkable success for our approach.”

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.