homehome Home chatchat Notifications


When laying the foundations for life, the Universe leaves little room for error

All life as we know it is primarily based on two elements: carbon and oxygen. Scientists at North Carolina State University investigating the conditions required for the formation of these life essential ingredients found that the Universe lives little room for error. Carbon and oxygen are formed as combustion byproducts after helium burns inside a […]

Tibi Puiu
March 18, 2013 @ 6:44 am

share Share

Light quark mass determines carbon and oxygen production and the viability of carbon-based life. Image credit: Dean Lee. Earth and Mercury images from NASA.

Light quark mass determines carbon and oxygen production and the viability of carbon-based life. Image credit: Dean Lee. Earth and Mercury images from NASA.

All life as we know it is primarily based on two elements: carbon and oxygen. Scientists at North Carolina State University investigating the conditions required for the formation of these life essential ingredients found that the Universe lives little room for error.

Carbon and oxygen are formed as combustion byproducts after helium burns inside a giant red star. However, for Carbon-12 to form – an essential carbon isotope we’re all made of – specific conditions need to be facilitated. Carbon-12 can only form when alpha particles (helium-4 nuclei) combine in  a specific manner – to be more precise, carbon-12 needs to be under an excited state known as the Hoyle state. Similarly, Oxygen is produced  by the combination of another alpha particle and carbon.

NC State physicists worked off previous research that confirmed both the existence and structure of the Hoyle state with a numerical lattice, which formed the basis for simulations of proton-neutron interactions. Protons and neutrons consist of elementary particles known as quarks. A fundamental property of these elementary particles is the light quark mass, which affects the particles’ energies. The Hoyle state has a very specific energy – measured at 379 keV (or 379,000 electron volts) above the energy of three alpha particles.

The physicists ran a new lattice calculation using massive computing power at the Juelich Supercomputer Centre and found that a tiny variation of the light quark mass will dramatically alter the Hoyle state energy in such a manner that carbon and oxygen would not be produced. So, in a way, the Universe has a very tight hold on how life may form.

“The Hoyle state of carbon is key,” NC State physicist Dean Le says. “If the Hoyle state energy was at 479 keV or more above the three alpha particles, then the amount of carbon produced would be too low for carbon-based life.

“The same holds true for oxygen,” he adds. “If the Hoyle state energy were instead within 279 keV of the three alphas, then there would be plenty of carbon. But the stars would burn their helium into carbon much earlier in their life cycle. As a consequence, the stars would not be hot enough to produce sufficient oxygen for life. In our lattice simulations, we find that more than a 2 or 3 percent change in the light quark mass would lead to problems with the abundance of either carbon or oxygen in the universe.”

The findings were reported in a paper published in the journal Nuclear Theory.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.