homehome Home chatchat Notifications


Fluid coalescence phenomenon explained 100 years after discovery

When two fluid jets meet, they might coalescence or not depending on a number of factors. The 19th century born John William Strutt, 3rd, also known as Lord Baron Rayleigh made a number of significant contributions to physics during his lifetime, some of his most notable work being in the field of fluids dynamics. It was […]

Tibi Puiu
March 25, 2013 @ 12:52 pm

share Share

When two fluid jets meet, they might coalescence or not depending on a number of factors. The 19th century born John William Strutt, 3rd, also known as Lord Baron Rayleigh made a number of significant contributions to physics during his lifetime, some of his most notable work being in the field of fluids dynamics.

It was Lord Rayleigh who was the first to assert that two fluids will not always merge, a counter intuitive fact that has since then been extensively studied. One side of his empirical observations have never been thoroughly explained, however, until recently until Sunghwan Jung, a  Virginia Tech assistant professor of engineering science and mechanics, took it upon himself to write a paper.

“In Rayleigh’s original paper, he mentioned two things: drop bouncing on a liquid bath and jets bouncing. No pictures were given. Much work has been done in drop-bath bouncing, but no work has been done in bouncing jets except for a couple of demonstrations in textbooks. We are the first ones to rationalize the physical mechanism of bouncing jets,” Jung explained.

In his study, Jung and colleagues analyzed two streams of silicon oil that met at a certain point. These were carefully studied and had their velocities incrementally increased until the jets merged.

“Intuition tells us that two or more jets of the same fluid impinging into each other will readily coalesce to form a single mass of fluid, and are well-studied phenomena,” Jung explained.

Apparently, for two jets to coalesce a certain velocity threshold needs to be met. Under this threshold, the two sillicon jets will bounce off each other, since these jets of fluid drag along air, considered to act as a cushion However, when the speed of the flow is increased beyond a certain threshold, the air is no longer stable due to the high inertia of jets, and the liquid jets will coalescence, Jung added.

This figure shows two fluid jets merging into one on the right when just a 20 percent speed increase is applied. (c) Virginia Tech

This figure shows two fluid jets merging into one on the right when just a 20 percent speed increase is applied. (c) Virginia Tech

The issue of non-coalescence is of great interest to scientists since the phenomenon impacts a number of applications, like fuel efficiency, ink jet printing, and the development of spray coatings. Rockets for instance use a mix of fuels which needs to be homogeneous for combustion to occur at maximum parameters.

In our experiments, we showed they are able to bounce off each other and inhibit the mixing. However, in rocket fuel tanks, the fluids come out of the nozzles are a very high speed, so no bouncing happens in their cases,” Jung said.

The findings were detailed in a paper called “Noncoalescence in the oblique collision of fluid jets”, published in the journal Physical Review Letters

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.