homehome Home chatchat Notifications


A few possible explanations for the faster than light particles

Ever since the physics experiment which recorded neutrinos traveling slightly faster than light have set the scientific world ablaze, and since then, over 80 possible explanations have emerged. While some claim that these results pave the way for a totally different set of laws of physics, many offer less revolutionary solutions to the problem. The […]

Mihai Andrei
October 17, 2011 @ 2:22 am

share Share

Ever since the physics experiment which recorded neutrinos traveling slightly faster than light have set the scientific world ablaze, and since then, over 80 possible explanations have emerged. While some claim that these results pave the way for a totally different set of laws of physics, many offer less revolutionary solutions to the problem.

The neutrinos that arguably arrived 60 nanoseconds before light would signify that the entire law of physics, as was postulated by Einstein would be totally wrong, and we would require an entirely new perspective over how nature works. However, it seems this doesn’t have to be the case, as more and more physicists are explaining how this can happen without rewriting the laws of physics.

The first real objection came from a team of astrophysicists. In 1987, a powerful supernova created a shower of light and neutrinos upon the Earth. It was observed that neutrinos arrived three hours before light did, but it was shown that this happened due to the lightweight particles getting a head start. Neutrinos, which have hardly any interaction with matter at all, escaped the exploding supernova with extreme ease, while light, which was absorbed and re-emitted several times took longer to flee.

Other scientists have taken these results and interpreted them according to the Standard Model of physics, which describes all sub-atomic particles and how they interact with each other. According to this model, if neutrinos have high enough energy levels, they produce a virtual electron-positron pair through a process known at Cohen-Glashow emission. Theoretical physicist Matt Strassler also explained that neutrinos going faster than light would cause electrons to do the same – which has been ruled out as a possible scenario.

Another possible and intriguing scenario makes Einstein’s theory defend itself: the OPERA team which recorded the results used GPS satellites to measure the 730 km distance between their detector and the CERN beam where the neutrinos were produced; however, according to special relativity, the calculations would turn out slightly differently when the two observers are moving one in respect to the other. Since the satellites were orbiting around the Earth, their movement could definitely account for the 64 nanosecond discrepancy.

Ultimately, it will take a whole lot of time and debate until this matter is settled, but, at the moment, it seems that Einstein’s theory passes another test – one of the hardest ones it’s had so far.

Via WIRED

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

It looks like plumbing but acts like a battery.

Scientists Are Building a Quantum Computer With Chips Made out of Glass

European researchers are developing quantum computers using light and glass, in a collaboration that promises breakthroughs in computing power, battery technology and scientific discovery.

NASA Astronaut Snaps Rare Sprite Flash From Space and It’s Blowing Minds

A sudden burst of red light flickered above a thunderstorm, and for a brief moment, Earth’s upper atmosphere revealed one of its most elusive secrets. From 250 miles above the surface, aboard the International Space Station, astronaut Nichole “Vapor” Ayers looked out her window in the early hours of July 3 and saw it: a […]

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

Researchers are challenging the limits of optical brain imaging.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.