homehome Home chatchat Notifications


Excitons observed in action for the first time

A technique developed by MIT researchers reveals the motion of energy-carrying quasiparticles (excitons) in solid material. Let’s work that out in common English. Quasiparticles aren’t technically particles, but they act like they are. It’s hard to give a definition without going into more complicated physics here, but a quasiparticle is a disturbance, in a medium, that behaves […]

Mihai Andrei
April 21, 2014 @ 4:41 pm

share Share

A technique developed by MIT researchers reveals the motion of energy-carrying quasiparticles (excitons) in solid material. Let’s work that out in common English.

exciton

Quasiparticles aren’t technically particles, but they act like they are. It’s hard to give a definition without going into more complicated physics here, but a quasiparticle is a disturbance, in a medium, that behaves as a particle and that may conveniently be regarded as one. They occur when a microscopically complicated system behaves as if it were particle. Excitons are quasiparticles responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits. They have been theoretically understood for decades (at least generally), but they have never been observed in practice – until now, that is.

Now scientists at MIT and the City University of New York have achieved that feat, imaging excitons’ motions directly. This doesn’t only provide valuable insight into natural energy-transfer processes such as photosynthesis, but could also have direct applications in electronics and renewable solar energy. MIT postdocs Gleb Akselrod and Parag Deotare, professors Vladimir Bulovic and Marc Baldo, and four others describe their discovery in Nature Communications.

“This is the first direct observation of exciton diffusion processes,” Bulovic says, “showing that crystal structure can dramatically affect the diffusion process.”

They emphasized that studying excitons could prove to be valuable soon rather than later.

“Excitons are at the heart of devices that are relevant to modern technology,” Akselrod explains: The particles determine how energy moves at the nanoscale. “The efficiency of devices such as photovoltaics and LEDs depends on how well excitons move within the material,” he adds.

The most interesting behavior is when an exciton, which acts as if it were a particle, pairs an electron, which carries a negative charge, with a place where an electron has been removed, known as a hole. The result is that the system has no electrical charge, but it does carry energy. That process happens a lot in solar energy: in a solar cell, an incoming photon may strike an electron, kicking it to a higher energy level. The energy is propagated through an exciton – chargeless, but still carrying energy.

“People always assumed certain behavior of the excitons,” Deotare says. Now, using this new technique — which combines optical microscopy with the use of particular organic compounds that make the energy of excitons visible — “we can directly say what kind of behavior the excitons were moving around with.” This advance provided the researchers with the ability to observe which of two possible kinds of “hopping” motion was actually taking place.

The good thing is that while this method was highly innovative, it’s not really that complicated or expensive. Scientists explain it to spread widely in labs throughout the world.

“It’s a very simple technique, once people learn about it,” Akselrod says, “and the equipment required is not that expensive.”

Source: MIT News.

 

share Share

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.