homehome Home chatchat Notifications


For the first time, physicists measure electron as it jumps from semiconductor. Yes, it's a big deal!

All our modern electronics are based on a class of wonder materials called semiconductors. What makes these so valuable is their ability to free electrons when subjected to an electrical current or when hit by light, becoming mobile and eventually routed and switch through a transistor. It’s the very basis of our digital age, be […]

Dragos Mitrica
December 12, 2014 @ 1:08 pm

share Share

All our modern electronics are based on a class of wonder materials called semiconductors. What makes these so valuable is their ability to free electrons when subjected to an electrical current or when hit by light, becoming mobile and eventually routed and switch through a transistor. It’s the very basis of our digital age, be it solar cells or computers. Now, researchers at UC Berkeley have taken a real-time snapshot of electrons being stripped from silicon’s valence shell for the very first time.

A brief jump

In semiconductors like silicon, electrons attached to atoms in the crystal lattice can be mobilized into the conduction band by light or voltage. Berkeley scientists have taken snapshots of this very brief band-gap jump and timed it at 450 attoseconds. Stephen Leone image.

In semiconductors like silicon, electrons attached to atoms in the crystal lattice can be mobilized into the conduction band by light or voltage. Berkeley scientists have taken snapshots of this very brief band-gap jump and timed it at 450 attoseconds. Image: Stephen Leone.

This jump happens so fast that extremely fast lasers,  femtosecond lasers, are unable to measure it. This time, scientists turned to a type of laser that sends pulses of light even faster – attosecond pulses of soft X-ray light lasting only a few billionths of a billionth of a second. Experiments show that the time it takes from an electron to transit from the atom’s valence shell, across the band-gap, and into the conduction region is 450 attoseconds or 450 quintillionths of a second.

“Though this excitation step is too fast for traditional experiments, our novel technique allowed us to record individual snapshots that can be composed into a ‘movie’ revealing the timing sequence of the process,” explains Stephen Leone, UC Berkeley professor of chemistry and physics.

In the experiment published in Science, Leone and colleagues zapped a silicon crystal with ultrashort pulses of visible light using a laser. Immediately after the laser was fired, a subsequent X-ray beam was directed which lasted only a few tens of attoseconds (10-18 seconds) to take snapshots of the evolution of the excitation process triggered by the laser pulses. The experimental data was then interpreted by a supercomputer simulation at the  at the University of Tsukuba and the Molecular Foundry. Not only did the simulation model the excitation of the electrons, but also  the subsequent interaction of X-ray pulses with the silicon crystal.

Physics has identified two distinct states that occur when a semiconducting atom is “activated”. First, the electron absorbs energy and jumps to a higher state where it’s free to roam – it gets excited. Then, the lattice made up of the individual atoms arranged in an orderly manner to form the crystal rearranges itself in response to the redistribution of electrons. In this second stage, part of the energy used to excite the electron is transformed into heat carried by vibrational waves called phonons.

The present experiment confirms this once more, while offering a more refined look of what happens inside. The experiments show that initially, only electrons react to the energy from the laser. Then, after the laser has stopped firing or  60 femtoseconds later, they observed the onset of a collective movement of the atoms, that is, phonons. The researchers estimate the lattice spacing rebounded about 6 picometers (10-12meters) as a result of the electron jump, consistent with other estimates.

“These results represent a clean example of attosecond science applied to a complex and fundamentally important system,” Neumark says.

 

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.