homehome Home chatchat Notifications


Direct measurement of Van der Waals force made for the first time

Scientists at the Laboratoire Charles Fabry (LCF) in Palaiseau and the University of Lille have for the very first time performed a direct measurement of a Van der Waals force – the weak intermolecular force that causes, in some cases when there isn’t a strong force present, to attract and “stick” to one another. The Van […]

Tibi Puiu
July 5, 2013 @ 9:49 am

share Share

Scientists at the Laboratoire Charles Fabry (LCF) in Palaiseau and the University of Lille have for the very first time performed a direct measurement of a Van der Waals force – the weak intermolecular force that causes, in some cases when there isn’t a strong force present, to attract and “stick” to one another. The Van der Waals force is what actually most of the time keeps gas molecules together, as well as liquids and some solids, and allows them to travel in bulk as a fluid. Some animals like geckos use Van der Waals forces to climb just about any surface.

This fantastic achievement was made after the researchers trapped two Rydberg atoms with a laser and then measured the force as a function of the distance separating them. Previously, indirect measurements of Van der Waals force were made with varying degree of accuracy. Examples include analysing the net forces experienced by macroscopic bodies or using spectroscopy to work out the long-range behaviour of the force between two atoms in a diatomic molecule.

“What we have done here, for the first time to our knowledge, is to measure directly the Van der Waals interaction between two single atoms that are located at a controlled distance, chosen by the experimenter,” says Thierry Lahaye, who is part of the LCF team.

via agpa.uakron.edu

via agpa.uakron.edu

Direct measurement of Van der Waals forces has eluded scientists up until now, however, since atoms are very spaced apart by very short distances, making it difficult to measure the distance between them. The French researchers had to use Rydberg atoms to solve one part of the problem. These atoms are marge larger than most of the others, and thus have a large relative distance between them. Also, these atoms have one electron in a highly excited state. This means that they have a very large instantaneous dipole moment – and therefore should have very strong Van der Waals interactions over relatively long distances.

To measure the Van der Waals between the two Rydberg atoms, the researchers first trapped each individual atom with tightly focused laser beams. Another laser beam fired at a specific wavelength was the shone on the atoms, which caused them to oscillate. By measuring these oscillations, the team worked out the Van der Waals force between the two Rydberg atoms. Moreover, by adjusting the trapping laser beam, the scientists were able to adjust the distance between the two atoms. As the researchers changed the distance R between the atoms, the force varied as 1/R6– exactly as expected for the Van der Waals force.

The French researchers work will most likely have more significant impact in practical applications, then in the actual milestone put in place. With their direct measurement of the Van der Waals, the researchers show that the quantum evolution of the state of the two interacting Rydberg atoms was fully coherent,  identical to that of a quantum-logic gate operating on two quantum bits (qubits).

“This will allow us to engineer small quantum systems of increasing size, from two to hopefully a few tens of Rydberg atoms, over which we have full control of the interactions,” explains Lahaye.

Another step forward towards developing the first quantum information devices. ZME folks, are you ready for the age of quantum computers? We’re really stoked about this; share your thoughts in the comment section below.

The experiment is described in Physical Review Letters. [source Physics World]

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.