homehome Home chatchat Notifications


Brightest thing in nature doesn't rely on pigment

I sometimes found myself shocked when I see just how brightly colored some flowers, insects, or even grass can get. But this little, relatively obscure plant has managed to find a fantastic way to send out a signal to every bird out there – and it has done so without using any pigment. Most of […]

Mihai Andrei
September 27, 2012 @ 7:52 am

share Share

I sometimes found myself shocked when I see just how brightly colored some flowers, insects, or even grass can get. But this little, relatively obscure plant has managed to find a fantastic way to send out a signal to every bird out there – and it has done so without using any pigment.

Most of the colored animals and plants we see around today are colored due to pigmentation; a pigment is a material that changes the color of reflected or transmitted light as the result of wavelength-selective absorption – sounds fancy, but it’s quite common. However, there are examples, such as the scarab and the peacock, that don’t use pigments, instead relying on what is called a structural colour.

I described structural color in a previous post, about an ancient butterfly, but if you didn’t get to read that, I’ll go through it again; such colors are caused by interference, and the effects are produced when a material is scored with fine parallel lines, formed of one or more parallel thin layers, or otherwise composed of microstructures on the scale of the color’s wavelength.

Typically, fruits are made of cells, surrounded by membranes containing cellulose; however, in the case of the Pollia condensata fruit the cellulose is laid down in layers, in an asymmetrical, chiral structure that interacts with light and provides selective reflection for a single color – blue.

Using this technique, Pollia condensata manages to trick the birds: although it provides practically no nutritional value, birds are attracted to its bright coloring and spread its seeds. Dr Beverley Glover from the University of Cambridge’s Department of Plant Sciences, who jointly led the research, explains:

“This obscure little plant has hit on a fantastic way of making an irresistible shiny, sparkly, multi-coloured, iridescent signal to every bird in the vicinity, without wasting any of its precious photosynthetic reserves on bird food. Evolution is very smart!”

Also, because it is constructed this way, the fruit doesn’t lose its color in time – samples collected in the 19th century were as bright and shiny as the ones today, yielding significant potential for future applications.

“By taking inspiration from nature, it is possible to obtain smart multifunctional materials using sustainable routes with abundant and cheap materials like cellulose.”, said Dr Silvia Vignolini, lead author on the paper from the University of Cambridge’s Department of Physics. “We believe that using cellulose to create colored materials can lead to many industrial applications. As an example, edible cellulose-based nanostructures with structural color can be used as substitutes for toxic dyes and colorants in food. Moreover, the fact that the processes involved in cellulose extraction and manipulation are already used in the paper industry facilitates the use of such materials for industrial applications such as security labeling or cosmetics.”

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.