homehome Home chatchat Notifications


The mystery of the blue whirl that consumes all the fuel in its path -- finally solved

It's actually three flames in one, meeting in a fourth, unique structure.

Mihai Andrei
August 13, 2020 @ 8:22 pm

share Share

In 2016, when researchers were looking into the most effective ways to clean ocean oil spills. They were experimenting with fire whirlwinds when they accidentally generated a whirling, blue, soot-free flame that consumes all the fuel it encounters.

This elusive type of flame has puzzled researchers ever since, until now, when its mystery may have finally been cracked.

“The blue whirl is a small, stable, spinning blue flame that evolved spontaneously in recent laboratory experiments while studying turbulent, sooty fire whirls. It burns a range of different liquid hydrocarbon fuels cleanly with no soot production, presenting a previously unknown potential way for low-emission combustion,” the researchers describe the phenomenon in a new study.

Although fire whirls are dangerous, violent, and turbulent, they can be created in (relatively) safe conditions for laboratory study. What’s more, because the whirl burns without soot in a seemingly clean combustion, it might indeed be used for ocean clean-ups.

But even with lab experiments, researchers still couldn’t tell exactly what was going on with the flame.

Flames generally fall into two categories: premixed and diffusion flames. Premixed flames occur in homogeneous mixtures where the fuel and the oxidant are already mixed prior to the reaction (think of a Bunsen burner); premixed flames can in turn be rich or lean, depending on whether they have an excess or dearth of fuel relative to the oxidizer. Meanwhile, in diffusion flames, the fuel and the oxidant are initially separate, which limits how fast the fire can burn. The blue whirl seems to be neither, or rather, a bit of both.

Image credits: Chung et al (2020) / Science Advances.

To crack the mystery, Joseph Chung and Xiao Zhang at the University of Maryland, College Park, and their colleagues created computer simulations of the flame.

They tweaked the model parameters more and more, until it finally started behaving like what they observed in experiments, and that’s when they finally understood what was going on.

According to these simulations, the blue whirl consists of three different flames: a diffusion flame, a premixed rich, and a premixed lean flame. When they all meet together, they form a fourth structure — a triple flame forming a blue ring.

“The results also show that the flow structure emerges as the result of vortex breakdown, a fluid instability that occurs in swirling flows. These simulations are a critical step forward in understanding how to use this previously unknown form of clean combustion,” the researchers explain.

Image credits: Chung et al (2020) / Science Advances.

Aside from helping explain an interesting phenomenon, the study could also help researchers learn to harness the power of the blue whirl for a cleaner, more efficient combustion, for instance reducing emissions from burning hydrocarbons in power plants or stoves.

While burning hydrocarbons is far from ideal and we will hopefully transition to renewable energy as quickly as possible, it won’t happen overnight and any tool that could help us is more than welcome.

Journal Reference

share Share

The pair of jeans that sent the chess world in turmoil

Magnus Carlsen wore jeans to a chess tournament. Now the entire sport is boiling over.

Ants outperform humans at group puzzle-solving activity

Ants may have tiny brains, but when it comes to teamwork, they pack a mighty punch.

Geneticists have finally solved the mystery of Garfield’s orange coat

Two new studies have revealed why some cats are orange – an enduring enigma of genetics, until now.

What did Roman wine taste like? It was 'spicy' and had an orange color

The secrets of ancient Roman wine are being uncorked by modern science.

The Science Behind Why Labradors Are Always Hungry

Labrador owners can finally stop feeling guilty for overfeeding.

Cosmic fireworks: zombie star explodes, creating massive filament structures

This incredible image captures the ghost of a supernova 100 light-years across.

3D-printed 'ghost guns', like the one Luigi Mangione allegedly used to kill a health care CEO, surge in popularity as law enforcement struggles to keep up

The use of 3D-printed guns in criminal and violent activities is likely to continue to increase. And governments and police will continue to have trouble regulating them.

The Billion-Year Journey That Shaped the Universe We Know Today

The revolutionary James Webb Space Telescope and next-gen radio telescopes are probing what’s known as the epoch of reionization. It holds clues to the first stars and galaxies, and perhaps the nature of dark matter.

Some Cultures Have No Words for Numbers Beyond 'Three'. Here's What They Can Teach Us

Can you imagine a world without numbers? For many people, that's their reality.

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models