homehome Home chatchat Notifications


Supermassive black holes like to wear gas donuts -- and we found out why

In all honesty, I'd wear a donut if I could get away with it, too.

Alexandru Micu
December 4, 2018 @ 4:54 pm

share Share

Supermassive black holes don’t really form dust ‘donuts’ — the structures surrounding these bodies are more akin to galactic matter fountains, new research reveals.

Supermassive Black Hole.

Artist’s concept of a supermassive black hole. Also shown are the accretion disk (donut) and the outflowing jet of energetic particles.
Image credits NASA-JPL.

Computer simulations and new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) suggest that the gas accretion rings around supermassive black holes (SBH) aren’t ring-shaped at all. Instead, gas being expelled from the SBM interacts with infalling matter to create a complex circulation pattern — one which the authors liken to a fountain.

Jets of matter

Most galaxies revolve around a SBH. These objects can be millions, even billions of times as heavy as the Sun, and they knit together galaxies through sheer gravitational power. Some of these SBHs are actively consuming new material. So far, common wisdom held that instead of falling directly in, matter builds around an active black hole in a donut or ring-shaped structure.

It wasn’t far from the truth but, new research reveals, it wasn’t spot-on either. A study led by Takuma Izumi, a researcher at the National Astronomical Observatory of Japan (NAOJ), reports that this ‘donut’ is not actually a rigid structure, rather a complex collection of highly dynamic gaseous components.

The researchers used the ALMA telescope to observe the Circinus Galaxy and the SBH at its center — which is roughly 14 million light-years away from Earth. They then compared their observations to computer models of gas falling toward a black hole. These simulations were run using the Cray XC30 ATERUI supercomputer operated by NAOJ.

All in all, the team found that there’s a surprising level of interplay between the gases in this structure. Cold molecular gas first falls towards the black hole to form a disk near the plane of rotation. Being so close to a black hole heats up the gas until its atoms break apart into protons and electrons. Not all of these products go on to be swallowed by the black hole. Some are instead expelled above and below the disk but are then snagged by the SBH’s immense gravitational presence, falling back onto the disk.

SBH interaction.

Rough schematic of the process’ dynamics. Pc stands for parsec, equal to about 3.26 light-years (30 trillion km or 19 trillion miles).

These three components circulate continuously, the team explains. Their interaction creates three-dimensional flows of highly turbulent matter around the black hole.

“Previous theoretical models set a priori assumptions of rigid donuts,” explains co-author Keiichi Wada, a theoretician at Kagoshima University in Japan who lead the simulation study.

“Rather than starting from assumptions, our simulation started from the physical equations and showed for the first time that the gas circulation naturally forms a donut. Our simulation can also explain various observational features of the system.”

The team says their paper finally explains how donut-shaped structures form around active black holes and, according to Izumi, will “rewrite the astronomy textbooks.”

The paper ” Circumnuclear Multiphase Gas in the Circinus Galaxy. II. The Molecular and Atomic Obscuring Structures Revealed with ALMA” has been published in The Astrophysical Journal.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.