homehome Home chatchat Notifications


World's biggest X-ray laser comes online in the Germany city of Hamburg

We will be able to see the very fabric of the world make and break.

Mihai Andrei
September 4, 2017 @ 6:15 pm

share Share

The enormous facility, which cost over one billion euros, will be used to study matter atom by atom.

A bigger X

A swathe of discoveries across biology, chemistry, and physics is expected. Image credits: XFEL.

In 1895, German physicist Wilhelm Röntgen identified a new type of electromagnetic radiation. It was so bizarre he called it an X-ray, because so many things about them were unknown (X). Unbeknownst to him, he was laying the foundation for a revolution in medicine. As is so often the case, the ripples sent by scientific progress are far reaching and few people — if any — would have guessed how important X-rays would become in modern life. Now, researchers are pushing the limits of the technology even further.

European X-ray Free Electron Laser (XFEL) will offer unprecedented power, allowing researchers to use X-rays to see how chemical bonds form or break. Just like Röntgen’s initial work, researchers expect new findings which will eventually pass on to medicine, opening new avenues for diagnosis and treatment. Up to 2010, over 5 billion X-ray scans have been performed in hospitals around the world.

Prof Robert Feidenhans’l is the MD of the non-profit company established to run the facility. He was thrilled to announce the start of the project.

“It’s a fantastic and exciting day for us to open the European XFEL for operation after more than eight years of construction,” he stated during the inauguration ceremony. “I now declare we are ready to take data; we are ready to meet the challenge of getting groundbreaking results.”

More than medicine

Overhead shot of the European XFEL X-ray Free Electron laser facility, near Hamburg, northern Germany. Image credits: XFEL.

The concept of the laser is not innovative — many research facilities run similar machines, called synchrotrons. However, the XFEL is about a billion times stronger than the average synchrotron. It’s the biggest and most powerful source of X-rays ever made, says Olivier Napoly, a member of the French Atomic Energy Commission who helped build the complex. The required energy will be provided via a 1.7 kilometres (one mile) superconducting linear accelerator.

But it’s not just about the power. XFEL has another particularity: the super-fast time structure in its flashes. It can deliver trillions (1,000,000,000,000) of X-ray photons in a pulse lasting just 50 femtoseconds (0.000,000,000,000,05 sec), and it can repeat this process 27,000 times a second. This will offer an unprecedented view into small-scale processes, such as the making and breaking of chemical bonds. The wavelength of the x-ray laser may be varied from 0.05 to 4.7 nanometers, enabling measurements at the atomic length scale. Researchers are especially interested in studying biological molecules, something which has proven notoriously difficult.

“The huge hope for XFEL is that we will be able to do single particle imaging. So, you just put a stream of your protein complex or virus into the beam and you’d have enough photons that an individual biological entity would scatter those photons for you to get the shape of it,” explained Oxford University’s Prof Elspeth Garman, who sits on the committee that will allocate scientists experimental time in Hamburg.

Although the facility is just starting its operation, researchers are already working on replacement parts for it. The XFEL’s high-energy beam is so intense it actually destroys the samples, so it’s expected that the camera recording the process will also degrade in time.

But as good as XFEL is, it won’t reign supreme for long. The United States Department of Energy National Laboratory is already working on a similar laser, part of the SLAC National Accelerator Laboratory project. Operated by Stanford University, SLAC’s X-ray laser will be able to fire one million times per second.

share Share

Did your rent just surge? Blame this price-fixing AI landlord costing Americans $3.6 billion annually

AI is changing the housing market and renters are paying the price.

Melting Antarctic Ice Could Awaken 100 Hidden Volcanoes

As ice recedes, hidden volcanoes under Antarctica awaken, reshaping predictions for climate change.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

200 Jurassic-era dinosaur footprints unearthed on UK’s largest dinosaur highway

Thanks to a storm, these dinosaur footprints managed to remain preserved for 166 million years.

The Soviets sent most of its intellectuals to remote gulags. Decades later, those areas became more prosperous

A new study reveals that regions near Soviet GULAG camps are more prosperous today, thanks to the unintended legacy of intellectual capital of educated prisoners

Strange Painted Penis Bone Found in England Reveals Rituals From Roman Britain

An enigmatic artifact suggests ancient rituals tied to fertility and agricultural cycles.

Tiny Surfers: How Bats Use Warm Air Waves for Epic Migrations

The discovery that bats synchronize their migrations with storm fronts provides critical insights into their survival strategies.

Does taking part in Veganuary put people off meat in the long term? Here’s what the evidence shows

With millions participating annually, Veganuary is more than just a trend—it’s transforming attitudes towards meat.

Chimp Choose Their Stone Tools Like Our Human Ancestors From 2.5 Million Years Ago

Wild chimpanzees' tool selection reveals surprising parallels with ancient hominins.

Yellowstone is unlikely to erupt soon. But we should still keep an eye on it

A Yellowstone eruption is the stuff of apocalyptic nightmares, but there's good news: a new study shows its magma is locked in a crystalline 'mush', not ready to blow.