homehome Home chatchat Notifications


Too big to orbit: Jupiter is so massive it doesn't actually orbit the Sun

They actually take one another for a spin.

Alexandru Micu
July 28, 2016 @ 2:05 pm

share Share

The fifth planet from the Sun and owner of the most iconic stormy swirl in the Solar Sistem, Jupiter is nothing if not massive. So massive, in fact, that the planet doesn’t simply orbit our sun, but drags it along for the ride.

Image via pixabay

What?

It’s all a matter of physics and Newton’s universal law of gravitation. It’s the one which says objects pull on each other with a force proportional to the product of their masses and inversely proportional to the square of the distance between them. So more mass means a stronger gravitational pull, but as you move away from said mass this pull drops exponentially. This is why gravity can keep your feet on the ground but isn’t strong enough to pull every comet in the universe down on our heads.

Now because of this, in theory, whenever two objects in space meet and start orbiting, it’s not one body going round a fixed other — they both move around a central point whose position is determined by the relative masses of the objects. Think of how the Moon causes ebb and flow. It also pulls on the rocks and soil that make up our planet, pulling it as a whole towards the Moon. The ISS also pulls on Earth with its own very weak gravitational field. In both cases, the centre of gravity is so close to our planet’s centre that the effect is negligible. Earth doesn’t seem to move, and the Moon and ISS make perfect circles around it.

When talking about out neighbouring planets, the gravitational centre is so close to the Sun’s centre that we don’t even bother with it. Not even Saturn has a noticeable effect on its position in space. So, for all intents and purposes, we consider the centre of the Sun to be the point around which everything in our system orbits around.

Except Jupiter, Tech Insider reports.

Because of the sheer mass of the gas giant (Jupiter has two and a half times the mass of all other planets in the solar system combined) it’s centre of mass with the Sun is 1.07 solar radii outside the middle of the star. So the central point around which both Jupiter and the Sun orbit, the “barycenter” as it is known, lies 7 percent of the Sun’s radius above its surface. Both the Sun and Jupiter orbit around that point in space.

This gif NASA put together shows what I’m talking about.

This is, in essence, how Jupiter and the Sun move through space together – though the distances and sizes aren’t to scale. Jupiter is still only a fraction of the Sun’s size.

share Share

Researchers can't rule out the possibility of life existing on Titan

It wouldn't be very much, but it's exciting anyway.

The Earth's oceans were once green. Then, cyanobacteria and iron came in

A pale green dot?

Could man's best friend be an environmental foe?

Even good boy and girls can disrupt wildlife in ways you never expected.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.

Archaeologists Just Found a Stunning Teotihuacan Altar Hidden in a Maya City. Its Murals Tell a Shocking Story

What were these outsiders doing so far away from home?

These Strange-Looking Urinals Could Finally Stop Pee From Splashing Back on You

The humble urinal gets a much needed high-tech update after 100 years.

Archaeologists Unearth 150 Skeletons Beneath Vienna From 2,000-Year-Old Roman-Germanic Battlefield

A forgotten battle near the Danube reveals clues about Vienna's inception.

An AI Called Dreamer Learned to Mine Diamonds in Minecraft — Without Being Taught

A self-improving algorithm masters a complex game task, hinting at a new era in AI.

Alcohol Helps Male Fruit Flies Get Lucky—But They Know When to Stop

Male fruit flies use booze to boost pheromones and charm potential mates—just not too much.

UK Is Testing a "Murder Prediction" tool—and It's Seriously Alarming

Just in case your day wasn't dystopian enough.