homehome Home chatchat Notifications


New Particles Found at Large Hadron Collider

It’s really awesome when the practice confirms the theory! Experiments at the Large Hadrdon Collider have revealed two never before seen particles – exotic types of baryons which were previously predicted by theoretical research. The new measurements serve to confirm and refine the existing theory of subatomic particles and help pave the way for the discovery […]

Dragos Mitrica
February 13, 2015 @ 4:11 am

share Share

It’s really awesome when the practice confirms the theory! Experiments at the Large Hadrdon Collider have revealed two never before seen particles – exotic types of baryons which were previously predicted by theoretical research. The new measurements serve to confirm and refine the existing theory of subatomic particles and help pave the way for the discovery of more particles predicted by the Standard Model.

The LHCb experiment at CERN’s Large Hadron Collider.
CERN

The LHC is the world’s largest and most powerful particle collider, and actually the largest single machine in the world. Its goal is to test if theoretical predictions are correct and either confirm or infirm the Standard Model – a theory that classifies all the subatomic particles.

In this case, they discovered two types of baryons – Xiband Xib*(pronounced “zi-b-prime” and “zi-b-star”), February 10 in Physical Review Letters. (They posted a preprint of their paper in November on the arXiv server).

“These were two things that very much should have existed,” says Matthew Charles of Paris 6 University Pierre and Marie Curie, a co-author of the study. “Of course, you still have to check because every now and then you get a surprise.”

Baryons are composite subatomic particles made up of three quarks. The most familiar baryons are the protons and neutrons that make up most of the atoms, but some baryons are more exotic, depending on the quarks they are made from. Quarks are elementary particles (as opposed to composite particles, like baryons); there are  six types of quarks, known as flavors: up, down, strange, charm, top, and bottom.

The two newfound baryons are higher-energy configurations, and their masses had been estimated on a theory called quantum chromodynamics (QCD), which describes the strong force – one of the four fundamental forces, responsible in part for nuclear attractions. The fact that the theoretical predictions fitted perfectly with what was observed in experiments is remarkable.

“This is a validation that the theoretical approach is the correct one and that we have the calculation under control,” says theorist Richard Woloshyn of the Canadian particle physics laboratory TRIUMF, who published a prediction of the Xib masses in 2009.

 

share Share

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.