homehome Home chatchat Notifications


Could you balance a pencil on a one-atom thick tip?

It's Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking.

Tibi Puiu
April 18, 2015 @ 8:49 am

share Share

It’s Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking. Let’s imagine a   perfectly symmetrical pencil in terms of density, whose tip – just one atom thick of graphite – lies on a perfectly smooth surface. We want it to be perfectly still and perfectly upright to balance on the surface. The real world isn’t perfect of course, but these sort of assumptions are important to make the problem tractable since we can describe the system’s behavior through equations that can predict what happens next, like will the pencil balance or not? Well, first of all the pencil balancing act fails almost immediately depending on far you want to go with “perfect” model assumptions. One single photon hitting the pencil is enough to unbalance the graphite rod. Then there are tidal forces exerted by the moon and the sun. Then of course, given Earth’s gravity, only one atom thick tip can’t sustain the weight of a pencil and would break. For graphite, the thinnest tip you could use to withstand the weight of a pencil is 0.01 millimeters, which is amazingly sharp by not nearly atomic.

Even if we cool to absolute zero, vacuum and put the pencil in a pitch black room, in the end, it would all boil down to quantum mechanics toppling our pencil. A clever Physics Stackexchange user called Floris sums it up for us:

Momentum and position form a conjugate pair. ΔxΔp.

Angular momentum and angular position form one too. ΔLΔΘ

This doesn’t guarantee that angular momentum and angular position will be non-zero. It is an uncertainty – The actual values can be anything, including 0.

But it does prevent you from arranging them both so the pencil stays upright. Furthermore, if you ask what the probability of finding both values very close to 0, you find that it is very small. In the limit, infinitely improbable.

If it turns out that L=Θ=, and you plug in reasonable values for the mass and length of the pencil, you will find it falls over in a few seconds.

Another very in-depth explanation of the one-atom-thick pencil problem can be found at The Virtuosi.

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.