homehome Home chatchat Notifications


Scientists make artificial diamonds at room temperature

A new method creates diamonds in the lab in just minutes and at room temperature.

Tibi Puiu
November 19, 2020 @ 7:52 pm

share Share

Xingshuo Huang is a Ph.D. candidate at the Research School of Physics at the Australian National University. In this image, she is holding the anvil used to create synthetic diamonds at room temperature. (Image: Jamie Kidston/ANU).

In nature, diamonds were formed billions of years ago deep within Earth’s crust under conditions of intense heat and pressure. Typically, diamonds form at depths of around 150-200 kilometers (93-124 miles) below the surface of Earth, where temperatures average 900 to 1,300 degrees Celsius (1650 to 2370 degrees Fahrenheit) and the pressure is around 50,000 times greater on the surface. This is also why diamonds are so coveted — it took millions of years to make them under special conditions.

But now, scientists in Australia are claiming that they can make diamonds in just a couple of minutes — and at room temperature to boot.

Diamonds are forever… but it shouldn’t take that long to make them

Since diamonds are so rare, geologists sought to develop methods to create artificial diamonds. It was only in the 1950s that Swedish and American scientists finally discovered how to convert graphite and molten iron into a synthetic diamond, fulfilling the literary prediction of Jules Verne.

The most common method for creating synthetic diamonds used in the industry is called high pressure, high temperature (HPHT). During HPHT, carbon is subjected to similarly high temperatures and pressures as the carbon that turned into diamonds billions of years ago. 

In their new study, physicists at the Australian National University (ANU) and RMIT University in Melbourne described how they created two types of diamonds. One involves diamonds similar to the kind used in jewelry, the other is a harder-than-usual type called Lonsdaleite created by meteorite impacts.

The amazing thing is that both types of diamonds were generated at room temperature, which is a huge achievement, especially for the rare Lonsdaleite variety that is 58% harder than regular diamonds. However, scientists still had to apply immense pressure onto carbon atoms —  the equivalent to 640 African elephants balancing on the tip of a ballet shoe.

“The twist in the story is how we apply the pressure,” says ANU Professor Jodie Bradby. “As well as very high pressures, we allow the carbon to also experience something called ‘shear’ – which is like a twisting or sliding force. We think this allows the carbon atoms to move into place and form Lonsdaleite and regular diamond.”

River of diamond. Credit: RMIT.

Small slices from the diamonds were cut and then put under the electron microscope so that the researchers could better understand their structure and how they formed. This way, they noticed the materials were formed within bands, which they call “rivers”.

“Our pictures showed that the regular diamonds only form in the middle of these Lonsdaleite veins under this new method developed by our cross-institutional team,” says RMIT’s Professor Dougal McCulloch. “Seeing these little ‘rivers’ of Lonsdaleite and regular diamond for the first time was just amazing and really helps us understand how they might form.”

These artificial diamonds are not meant as jewelry, although there wouldn’t be something wrong to use them in an engagement wrong. Instead, they’re meant for industrial applications where slicing through tough material is required or as protective shielding.

“Lonsdaleite has the potential to be used for cutting through ultra-solid materials on mining sites,” Bradby said in a statement.

The findings appeared in the journal Small.

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.